Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 120: 155069, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722186

ABSTRACT

BACKGROUND: According to the WHO, 12 bacteria cause numerous human infections, including Enterobacteriaceae Klebsiella pneumoniae, and thus represent a public health problem. Microbial resistance is associated with biofilm formation; therefore, it is critical to know the biofilm-inducing potential of various compounds of everyday life. Likewise, the reversibility of biofilms and the modulation of persister cells are important for controlling microbial pathogens. In this work, we investigated the biofilm-inducing effects of xanthones from Garcinia mangostana on Klebsiella pneumoniae. Furthermore, we investigated the reversal effect of 3-methyl-2(5H)-furanone and the formation of persister cells induced by xanthones and their role in modulating the biofilm to the antibiotic gentamicin. METHODS: To analyze the biofilm-inducing role of xanthones from Garcinia mangostana, cultures of K. pneumoniae containing duodenal probe pieces were treated with 0.1-0.001 µM α- and γ-mangostin, and the biofilm levels were measured using spectrophotometry. To determine biofilm reversion, cultures treated with xanthones, or gentamicin were mixed with 3-methyl-2(5H)-furanone or N-butyryl-DL-homoserine lactone. The presence of K. pneumoniae persister cells was determined by applying the compounds to the mature biofilm, and the number of colony-forming units was counted. RESULTS: The xanthones α- and γ-mangostin increased K. pneumoniae biofilm production by 40% with duodenal probes. However, 3-methyl-2(5H)-furanone at 0.001 µΜ reversed biofilm formation by up to 60%. Moreover, adding the same to a culture treated with gentamicin reduced the biofilm by 80.5%. This effect was highlighted when 3-methyl-2(5H)-furanone was administered 6 h later than xanthones. At high concentrations of α-mangostin, persister K. pneumoniae cells in the biofilm were about 5 - 10 times more abundant than cells, whereas, with γ-mangostin, they were about 100 times more. CONCLUSION: Two xanthones, α- and γ-mangostin from G. mangostana, induced biofilm formation in K. pneumoniae and promoted persister cells. However, the biofilm formation was reversed by adding 3-methyl-2(5H)-furanone, and even this effect was achieved with gentamicin. In addition, this compound controlled the persister K. pneumoniae cells promoted by α-mangostin. Thus, synthetic, and natural biofilm-inducing compounds could harm human health. Therefore, avoiding these substances and looking for biofilm inhibitors would be a strategy to overcome microbial resistance and recover antibiotics that are no longer used.


Subject(s)
Garcinia mangostana , Xanthones , Humans , Lactones , Anti-Bacterial Agents/pharmacology , Biofilms , Gentamicins , Serine , Xanthones/pharmacology
2.
Heliyon ; 9(7): e17801, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483711

ABSTRACT

A promising strategy for developing novel therapies against tropical diseases, including malaria, leishmaniasis, and trypanosomiasis, is to detect biological targets such as trypanothione reductase, a vital parasite enzyme that regulates oxidative stress. This enzyme is highly selective and conserved in the Trypanosotidae family and has an ortholog in the Plasmodium genus. Previous studies have established that an isosteric replacement of naphthoquinone's carbonyl group with a sulfone group leads to compounds with high bioactivity and selectivity (half-maximal inhibitory concentration = 3 µM against intracellular amastigotes of L. panamensis, selectivity index = 153 over monocytes U-937). In this study, we analyzed the reactive oxygen species (ROS) levels of parasites through indirect measurements of the tryparedoxin system after treatment with these isosteric compounds. This strategy proved that a significant increase in the ROS levels and strong mitochondrial perturbation led to the death of parasites due to cell homeostatic imbalance, confirming the compounds' effectiveness in disrupting this important metabolic pathway. To improve understanding of the parasite-molecule interaction, 27 new compounds were synthesized and assessed against parasites of the three principal tropical diseases (malaria, leishmaniasis, and trypanosomiasis), displaying an EC50 below 10 µM and good correlation with in-silico studies, indicating that the 4H-thiochromen-4-one 1,1-dioxide core is a special allosteric modulator. It can interact in the binding pocket through key amino acids like Ser-14, Leu-17, Trp-21, Ser-109, Tyr-110, and Met-113, leading to interhelical disruption.

3.
Arch Pharm (Weinheim) ; 356(7): e2300108, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37068175

ABSTRACT

In the last decade, the World Health Organization has driven the development of drugs for topical use in patients with cutaneous leishmaniasis (CL), the most prevalent clinical form of leishmaniasis, a neglected tropical disease. The chemicals C6 I, TC1, and TC2 were reported as promising antileishmanial drugs. We aimed to develop a topical nanoformulation that enhances the advantageous effect of C6 I, TC1, and TC2, guaranteeing higher stability and bioavailability of the pharmacologically active components through the topical route. Nanoemulsions were prepared by ultrasonication based on oleic acid (0.5 g). A relation of Tween®-80/ethanol (1:3) and water was obtained; physicochemical characterization of all formulations was performed, and the preliminary stability and transdermal penetration of these nanoemulsions were also investigated. Newtonian-type fluids with high load capacity, 147-273 nm globule size, and -15 to -18 mV zeta potential were obtained with differential permeability rates in the first pig ear skin assay, first-order kinetics-release model for C6 I, and Weibull for TC1 and TC2. The nanoemulsion showed good stability, high encapsulation efficiency, and higher leishmanicidal activity against Leishmania braziliensis with lower cytotoxicity in U937 macrophages. In conclusion, nanoemulsions of ethanol-oleic acid/Tween®-80 increase the activity of compounds with leishmanicidal activity by increasing their penetration and sustained release.


Subject(s)
Oleic Acid , Polysorbates , Animals , Swine , Delayed-Action Preparations , Polysorbates/pharmacology , Emulsions/chemistry , Structure-Activity Relationship
4.
Biotechnol Rep (Amst) ; 29: e00601, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732630

ABSTRACT

Isoflavonoid phytoalexins (isoflavones: genistein, 2'-hydroxygenistein, and daidzein; isoflavanones: dalbergioidin and kievitone; coumestrol; pterocarpans: phaseollidin and phaseollin; and the isoflavan: phaseollinisoflavan) production in response to the application of eleven 1-oxo-indane-4-carboxylic acid derivatives (indanoyl esters and indanoyl amino acids conjugates), in cotyledons and hypocotyl/root of two common bean (Phaseolus vulgaris L.) cultivars was evaluated. The content of isoflavonoids depended on the cultivar, the treated tissue, the time after induction, the structure and concentration of the elicitor. The highest isoflavonoid contents were found when 1-oxo-indanoyl-amino acids conjugates were used as elicitors. Cotyledons and hypocotyl/root of the anthracnose-resistant cultivar produced significantly higher isoflavonoid contents as compared to the susceptible one. Maximum levels of phaseollin were obtained using 0.66 mM 1-oxo-indanoyl-l-isoleucyl methyl ester and between 72 and 96 h post-induction. So, 1-oxo-indane-4-carboxylic acid derivatives, may be used to enhance the amount of isoflavonoid phytoalexins in common bean and protect crops from phytopathogenic microorganisms.

5.
J Ethnopharmacol ; 265: 113298, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32860892

ABSTRACT

ETNOPHARMACOLOGICAL RELEVANCE: Eucalyptus tereticornis Sm. (Eu) is a plant species used in traditional medicine to treat diabetes mellitus. Eu leaf extracts have been shown to regulate immuno-metabolic activities that are associated with obesity and insulin resistance. OBE100 and OBE104 are two natural Eu extracts that are rich in pentacyclic triterpenes. The major compounds identified in OBE100 are ursolic acid (UA), oleanolic acid (OA), and ursolic acid lactone (UAL), and the major compounds identified in OBE104 are UA and OA. AIM OF THE STUDY: This study aimed to investigate the effects of two extracts from Eu leaves with different triterpene composition in a nutritional animal model of prediabetes. METHODS: A mouse model of diet-induced obesity was used to analyze the effects of the OBE100 and OBE104 treatments on metabolic markers and gene expression in liver and visceral adipose tissue. RESULTS: Treating the prediabetic mouse model with OBE100 and OBE104 increased glucose tolerance. However, only the Eu extract that contained three triterpenes reduced mouse body weight, hepatic and adipose fat content, and plasma lipid levels. OBE100 treatment also led to decreased hepatic mRNA levels of PPARA, CPT1A, and SERBP1. In visceral adipose tissue, OBE100 treatment reduced expression of PPARA and ACACA and increased UCP1 expression. CONCLUSIONS: These results suggest that developing a new multitargeting bioactive compound from the natural extract from Eu may help combat obesity and diabetes. Treatment with OBE100 had better effects than OBE104 in a diet-induced obesity mouse model, suggesting that the OBE100 extract, which contains three triterpenes, may be beneficial in combating obesity.


Subject(s)
Eucalyptus/chemistry , Obesity/drug therapy , Plant Extracts/pharmacology , Prediabetic State/drug therapy , Triterpenes/pharmacology , Animals , Diet , Disease Models, Animal , Insulin Resistance , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Obesity/physiopathology , Plant Extracts/chemistry , Triterpenes/isolation & purification
6.
Arch Pharm (Weinheim) ; 353(12): e2000157, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33252148

ABSTRACT

Chalcones are a group of natural products with many recognized biological activities, including antiparasitic activity. Although a lot of chalcones have been synthetized and assayed against parasites, the number of structural features known to be involved in this biological property is small. Thus, in the present study, 21 chalcones were synthesized to determine the effect of substituents in the A and B rings on the activity against Leishmania braziliensis, Trypanosoma cruzi, and Plasmodium falciparum. The compounds were active against L. braziliensis in a structure-dependent manner. Only one compound was very active against T. cruzi, but none of them had a significant antiplasmodial activity. The electron-donating substituents in ring B and the hydrogen bonds at C-2' with carbonyl affect the antiparasitic activity.


Subject(s)
Chalcones/pharmacology , Leishmania braziliensis/drug effects , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Cell Survival/drug effects , Chalcones/chemical synthesis , Chalcones/toxicity , Drug Design , Humans , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/toxicity , U937 Cells
7.
Article in English | MEDLINE | ID: mdl-32734890

ABSTRACT

Toxicity and poor adherence to treatment that favors the generation of resistance in the Leishmania parasites highlight the need to develop better alternatives. Here, we evaluated the in vitro effectiveness of hydrazone derived from chromanes 2-(2,3-dihydro-4H-1-benzothiopyran-4-ylidene) hydrazide (TC1) and 2-(2,3-dihydro-4H-1-benzopyran-4-ylidene) hydrazide (TC2) and the mixture of triterpene saponin hederagenin-3-O-(3,4-O-diacetyl-ß-D-xylopyranosyl-(1à3)-a-L- rhamnopyranosyl-(1à2)-a-L-arabinofuranoside, hederagenin-3-O-(3,4-O-diacetyl-a-L- arabinopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside and, hederagenin-3-O-(4-O-acetyl-ß-D-xylopyranosyl-(1à3)-a-L-rhamnopyranosyl-(1à2)-a-L-arabinofuranoside from Sapindus saponaria (SS) on L. braziliensis and L. pifanoi. Mixtures of TC1 or TC2 with saponin were formulated for topical application and the therapeutic effectiveness was evaluated in the model for cutaneous leishmaniasis (CL) in golden hamster. The mode of action of these compounds was tested on various parasite processes and ultrastructural parasite modifications. TC1, TC2 and SS showed moderate cytotoxicity when tested independently but toxicity was improved when tested in combination. The compounds were more active against intracellular Leishmania amastigotes. In vivo studies showed that combinations of TC1 or TC2 with SS in 1:1 ratio (w/w) cured 100% of hamsters with no signs associated with toxicity. The compounds did cause changes in the mitochondrial activity of the parasite with a decrease in ATP levels and depolarization of membrane potential and overproduction of reactive oxygen species; nevertheless, these effects were not related to alterations in membrane permeability. The phagolysosome ultrastructure was also affected impacting the survival of Leishmania but the function of the lysosome nor the pH inside the phagolysosome did not change. Lastly, there was a protease inhibition which was directly related to the decrease in the ability of Leishmania to infect and multiply inside the macrophage. The results suggest that the combination of TC1 and TC2 with SS in a 1:1 ratio is capable of curing CL in hamsters. This effect may be due to the ability of these compounds to affect parasite survival and the ability to infect new cells.


Subject(s)
Hydrazones/pharmacology , Leishmania/drug effects , Sapindus/chemistry , Saponins/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/toxicity , Hydrazones/chemistry , Hydrazones/toxicity , Leishmania/metabolism , Leishmania/ultrastructure , Leishmania braziliensis/drug effects , Leishmania braziliensis/metabolism , Leishmania braziliensis/ultrastructure , Life Cycle Stages/drug effects , Mitochondria/drug effects , Mitochondria/ultrastructure , Peptide Hydrolases/drug effects , Peptide Hydrolases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/toxicity , Reinfection , Saponins/chemistry , Saponins/toxicity
8.
Plants (Basel) ; 9(2)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023821

ABSTRACT

Botrytis cinerea is a phytopathogenic fungus that causes large crop and post-harvest losses. Therefore, new and effective strategies are needed to control the disease and to reduce resistance to fungicides. Modulating pathogenicity and virulence by manipulating microbial communication is a promising strategy. This communication mechanism, called Quorum Sensing (QS), has already been reported in bacteria and yeasts; however, it has not yet been studied in B. cinerea. To establish the existence of this biochemical process in B. cinerea, we prepared extracts at different growth times (D1-D12), which were applied to fresh cultures of the same fungi. The chemical analysis of the extracts obtained from several fermentations showed different compositions and biological activities. We confirmed the presence of several phytotoxins, as well as compounds 1-phenylethanol and 3-phenylpropanol. Day five extract (0.1%) inhibited conidia germination and elongation of germ tubes, day seven extract (1%) produced the greatest phytotoxic effect in tomato leaves, and day nine extract (0.1%) was a sporulation inhibitor. In contrast, the extracts from days 7, 9, and 12 of fermentation (0.1% and 0.01%) promoted pellet and biofilm formation. Sporulation was slightly induced at 0.01%, while at 0.1% there was a great inhibition. At the highest extract concentrations, a biocidal effect was detected, but at the lowest, we observed a QS-like effect, regulating processes such as filamentation, morphogenesis, and pathogenesis. These results of the biological activity and composition of extracts suggest the existence of a QS-like mechanism in B. cinerea, which could lead to new non-biocidal alternatives for its control through interference in the pathogenicity and virulence mechanisms of the fungi.

9.
Molecules ; 25(4)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059518

ABSTRACT

In continuation of our efforts to identify promising antileishmanial agents based on the chroman scaffold, we synthesized several substituted 2H-thiochroman derivatives, including thiochromenes, thichromanones and hydrazones substituted in C-2 or C-3 with carbonyl or carboxyl groups. Thirty-two compounds were thus obtained, characterized, and evaluated against intracellular amastigotes of Leishmania (V) panamensis. Twelve compounds were active, with EC50 values lower than 40 µM, but only four compounds displayed the highest antileishmanial activity, with EC50 values below 10 µM; these all compounds possess a good Selectivity Index > 2.6. Although two active compounds were thiochromenes, a clear structure-activity relationship was not detected since each active compound has a different substitution pattern.


Subject(s)
Antiprotozoal Agents/pharmacology , Cell Proliferation/drug effects , Leishmania/drug effects , Pyrans/pharmacology , Sulfhydryl Compounds/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Humans , Leishmania/pathogenicity , Molecular Structure , Parasitic Sensitivity Tests , Pyrans/chemical synthesis , Pyrans/chemistry , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry
10.
Front Pharmacol ; 11: 584668, 2020.
Article in English | MEDLINE | ID: mdl-33424593

ABSTRACT

Through bioguided in vitro assays, the leishmanicidal and trypanocidal effects of an ethanol extract, seven fractions, and two pure substances obtained from Clathrotropis brunnea Amshoff sawdust were established. The effectiveness of the two metabolites was confirmed in a hamster model of cutaneous Leishmaniasis by Leishmania braziliensis and in Balb/c mice infected by Trypanosoma cruzi. In vitro, 3,5-dimethoxystilbene was the most active against L. braziliensis amastigotes, with a median lethal concentration (LC50) of 4.18 µg/ml (17.40 µM) and a selectivity index of 3.55, but showed moderate activity for T. cruzi, with a median effective concentration (EC50) value of 27.7 µg/ml (115.36 µM). Flavanone pinostrobin, meanwhile, showed high activity against L. braziliensis, with an EC50 of 13.61 µg/ml (50.39 µM), as well as for T. cruzi, with an EC50 of 18.2 µg/ml (67.38 µM). The animal model assay of cutaneous Leishmaniasis showed that 50% of the hamsters treated with pinostrobin were definitively cured the cutaneous ulcer, and 40% showed an improvement, with a reduction in the size of the of 84-87%. Moreover, Balb/c mice experimentally infected with T. cruzi and treated for 25 days with pinostrobin experienced a reduction in their parasitemia by 71%. These results demonstrate the high potential of C. brunnea Amshoff against cutaneous Leishmaniasis and American trypanosomiasis and indicate the pharmacological potential of waste from the wood industry, which has tons of potentially useful chemicals for the development of new medicines.

11.
Plants (Basel) ; 8(5)2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31027383

ABSTRACT

Botrytis cinerea is the causal agent of gray mold disease and is responsible for the loss of millions of dollars in crops in worldwide. Currently, this pathogen exhibits increasing resistance to conventional fungicides; therefore, better control methods and novel compounds with a more specific mechanism of action but without biocidal effects, are required. In this work, several natural compounds to control B. cinerea were analyzed in vitro. Detected effects were dependent on the stage of fungus development, and 3-phenyl-1-propanol displayed the most potent inhibition of in vitro germination, germ tube development, and sporulation. However, it had lower protection of leaves and postharvest fruit in plant infection. Isoeugenol and 1-phenylethanol exhibited lower inhibition of in vitro germination and sporulation, but at the highest concentrations, they inhibited germ tube elongation. Although the lowest rates of foliage infection were recorded using isoeugenol and 3-phenyl-1-propanol, 1-phenylethanol significantly decreased the disease in postharvest tomato fruit, with an efficacy like Mancozeb, but at 18 times lower micromolar concentration. All compounds resulted in high cell viability after spores were removed from the treatment solution exhibited high cell viability, suggesting a non-biocidal effect. The diversity of in vitro and in-plant effects seems to indicate a different mechanism of action.

12.
Biomolecules ; 9(2)2019 01 30.
Article in English | MEDLINE | ID: mdl-30704099

ABSTRACT

Human nosocomial infections are common around the world. One of the main causes is the bacteria Klebsiella pneumoniae, which shows high rates of resistance to antibiotics. Thus, drugs with novel mechanisms of action are needed. In this work, we report the effects of various natural substances on the formation of biofilm in Klebsiella pneumoniae, as well as its stability. The effect of the molecules on the growth of K. pneumoniae was initially determined by measuring the optical density. The modification of the biofilm, the changes relating to its resistance, the effects on the bacterial adhesion to the urethral catheter and its antagonist role the hexanoyl-homoserinelactone were assessed by crystal violet, as well as by microscopy. The best effects were obtained with 3-methyl-2(5H)-furanone and 2´-hydroxycinnamic acid, which inhibited the formation of biofilm by 67.38% and 65.06%, respectively. Additionally, the remaining biofilm formed was more susceptible to gentamicin. Through microscopy examination, there were evident changes in the biofilm and adherence on the polyvinyl chloride (PVC) urethral catheter. Besides, 3-methyl-2(5H)-furanone inhibited the biofilm-forming effect of the autoinducer hexanoyl-homoserinelactone. Thus, these molecules could be developed as supplemental of antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzofurans/pharmacology , Biofilms/drug effects , Biological Products/pharmacology , Coumaric Acids/pharmacology , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/chemistry , Benzofurans/chemistry , Biofilms/growth & development , Biological Products/chemistry , Cell Survival/drug effects , Coumaric Acids/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
13.
Bioorg Med Chem ; 27(1): 153-160, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30482546

ABSTRACT

We describe the in vitro activity of two natural isomeric ent-beyerene diterpenes, several derivatives and synthetic intermediates. Beyerenols 1 and 2 showed EC50 of 4.6 ±â€¯9.4 and 5.3 ±â€¯9.4 µg/mL against amastigotes of L. (V) brazilensis, with SI of 5.1 and 7.7, respectively. Beyerenol 1 was synthesized from stevioside. In vivo experiments with bereyenols showed cure in 50% of hamsters infected with L. (V) brazilensis topically applied as Cream I (beyerenol 1, 0.81%, w/w) and Cream III (beyerenol 2, 1.96%, w/w). These results suggest that beyerenols are potential candidates for cutaneous leishmaniasis chemotherapy by topical application. In vitro assays of amastigotes of L. (V) brazilensis showed EC50 of 1.1 ±â€¯0.1 and 1.3 ±â€¯0.04 µg/mL, with SI of 3.1 and 3.5 for hydrazone intermediates 10 and 11, respectively.


Subject(s)
Diterpenes/therapeutic use , Leishmaniasis, Cutaneous/drug therapy , Trypanocidal Agents/therapeutic use , Animals , Cell Line , Diterpenes/chemical synthesis , Diterpenes/pharmacology , Diterpenes/toxicity , Female , Humans , Leishmania braziliensis/drug effects , Macrophages/drug effects , Male , Mesocricetus , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanocidal Agents/toxicity
14.
Antibiotics (Basel) ; 7(4)2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30486494

ABSTRACT

Bacterial resistance is caused by several biochemical factors, the formation of biofilm being one of the main causes. This process is triggered by Quorum Sensing (QS), through the production of endogenous molecules, although other substances such as natural products can also do this. In this work, we aimed to determine whether some drugs are involved in the induction of biofilm formation in Klebsiella pneumoniae ATCC 13884, and thus, increase bacterial resistance. For this, the effect of 22 drugs on K. pneumoniae ATCC 13884 growth was determined at sub-plasmatic concentrations; the production of autoinducer lactones was established by HPLC and with a biosensor. The induction of biofilm formation was determined through crystal violet assay at 585 nm in a microplate reader and using urethral catheters. According to the in vitro assays, some drugs were found to induce biofilm formation in K. pneumoniae ATCC 13884. The effect of acetaminophen, hydrochlorothiazide, and progesterone stood out. The first drug caused several changes in the biochemistry of K. pneumoniae ATCC 13884 related to QS: high synthesis of N-hexanoyl-homoserine lactone, increasing bacterial populations by 27% and biofilm formation by 49%, and a more gentamicin resistant biofilm. Furthermore, it increased the colonization area of urethral catheters. Hydrochlorothiazide showed the biggest increase in the induction of biofilm formation of 51%, and progesterone displayed the greatest ability to provoke bacterial mass adherence but had no effects on K. pneumoniae ATCC 13884 bacterial population growth.

15.
Toxicon ; 154: 50-59, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30273704

ABSTRACT

The presence of cyanobacterial blooms and cyanotoxins in water presents a global problem due to the deterioration of ecosystems and the possibility of poisoning in human and animals. Microcystin LR is the most widely distributed cyanotoxin and liver cells are its main target. In the present study, HepG2 cells were used to determine DNA damage of three crude extracts of cyanobacterial blooms containing MC-LR, through comet assay. The results show that all extracts at a concentration of 500 µg mL-1 caused low damage in hepatocytes exposed for 24 h, but produced total mortality even at low concentrations at 48 h. Moreover, balloons corresponding to cell apoptosis were found. Through HPLC/MS, MC-LR was detected in all samples of cyanobacterial blooms at concentrations of (5,65 µg ml-1) in sample 1, (1,24 µg ml-1) in sample 2 and (57,29 µg ml-1) in sample 3. In addition, in all samples high molecular weights peaks were detected, that may correspond to other microcystins. Besides, the cytotoxic effect of a cyanobacterial bloom and some of its chromatographic fractions from the crude extracts were evaluated in U-937, J774, Hela and Vero cell lines, using the enzymatic micromethod (MTT). The highest toxicity was detected in U-937 cells (LC50 = 29.7 µg mL-1) and Vero cells (LC50 = 39.7 µg mL-1). Based on these results, it is important to remark that genotoxic and cytotoxicity assays are valuable methods to predict potential biological risks in waters contaminated with blooms of cyanobacteria, since chemical analysis can only describe the presence of cyanotoxins, but not their biological effects.


Subject(s)
Cyanobacteria/chemistry , Microcystins/toxicity , Animals , Benzyl Compounds , Cells, Cultured , Chlorocebus aethiops , Colombia , Comet Assay , Cyanobacteria/metabolism , DNA Damage , Environmental Monitoring , Hep G2 Cells , Humans , Marine Toxins , Microcystins/analysis , Microcystins/chemistry , Microcystins/metabolism , Mutagenicity Tests/methods , Pyrazines , U937 Cells , Vero Cells
16.
Bol. latinoam. Caribe plantas med. aromát ; 17(5): 414-425, sept. 2018. tab
Article in English | LILACS | ID: biblio-915671

ABSTRACT

Natural products are isolated from biodiversity, that is, from plants, microorganisms, insects, and marine organisms; most of the biodiversity is found in about 10-12 countries located around the Equator. For a long time, people chose this option to alleviate diseases and the industry to discover new medicines; however, from the 70's onwards synthetic products have displaced them. Today there is a rebirth of natural products research and annually hundreds of new natural and synthetic bioactive molecules are reported in specialized journals. On the other hands, new drugs are continually required and especially there is a deficit of them to treat the so-called Neglected Diseases, which affect and threaten the health of billions of people in the world. These diseases paradoxically affect almost all megadiverse countries. Thus, the richest countries in biodiversity do not benefit from the use of natural products because research, development and production of new medicines are carried out in more technologically advanced countries. Why do we have so many molecules in biodiversity and journals but so few medicines? How could new antiparasite drugs be developed quickly and cheaply in the countries affected by Neglected Diseases? A feasible alternative is the Mining in Press, that is, the search of molecules in scientific literature. In this paper we analyze the reasons why these valuable substances have not become drugs and remain curiosities of laboratories and libraries, and the advantages of using this approach as a source of drugs or templates to other bioactive molecules.


Los productos naturales son aislados de la biodiversidad, es decir, de plantas, microorganismos y organismos marinos; gran parte de la biodiversidad se encuentra en cerca de 10-12 paises localizados alrededor del Ecuador. Por mucho tiempo, la gente ha seleccionado esta opción para aliviar sus enfermedades y la industria para descubrir nuevas medicinas; sin embargo, desde los años 70s los productos sintéticos los han desplazado. Hoy hay un renacimiento de la investigación de productos naturales y anualmente cientos de nuevas moléculas naturales y sintéticas bioactivas son reportados en las publicaciones especializadas. De otro lado, continuamente se requieren nuevas drogas y especialmente hay un déficit de ellas para tratar las llamadas Enfermedades Olvidadas, que afectan y amenazan la salud de miles de millones de personas en el mundo. Estas enfermedades paradójicamente afectan casi todos los países megadiversos. De esta manera, los países más ricos en biodiversidad no se benefician del uso de productos naturales, ya que la investigación, el desarrollo y la producción de nuevas medicinas se lleva a cabo en países tecnológicamente avanzados. Por qué tenemos tantas moléculas en la biodiversidad y en las publicaciones, pero tan pocas medicinas? Cómo podrían las drogas antiparasitarias ser desarrolladas de manera mas rápida y barata en los países afectados por las Enfermedades Olvidadas? Una posible alternativa es la Minería de las Publicaciones, es decir, la búsqueda de moléculas en la literatura científica. En este artículo nosotros analizamos las razones por la cuales esas valiosas sustancias no han llegado a ser drogas y permanecen como curiosidades de los laboratorios y bibliotecas, y las ventajas de usar esta aproximación como una fuente de drogas o modelos de otras moléculas bioactivas.


Subject(s)
Plants, Medicinal , Biological Products/supply & distribution , Biodiversity , Antiparasitic Agents/supply & distribution , Reference Drugs , Neglected Diseases/drug therapy
17.
An Acad Bras Cienc ; 90(2 suppl 1): 1955-1971, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30066748

ABSTRACT

Time-course and dose-response experiments were carried out to establish the ability for synthesizing isoflavonoids of soybean seedlings (cv. Soyica P34) treated with salicylic (SA) and isonicotinic acids (INA). Then, 25 structurally-related compounds were evaluated for their isoflavonoid-eliciting activity. Next, the antimicrobial and antioxidant activities of EtOAc-soluble fraction from soybean seedlings treated with some synthetic elicitors were determined. Results showed that the concentration of isoflavonoids in soybean seedlings was significantly increased by the application of SA and INA. The major isoflavonoids detected were the malonyl-glycosidic isoflavones, followed by genistin and daidzin. The isoflavone aglycones (genistein, daidzein, and formononetin), coumestrol and glyceollins were found in lower concentrations. Maximum accumulation of glyceollins was detected after 48 and 144 h in soybean seedlings treated with 1.6 mM INA and SA, respectively. EtOAc-extracts from soybean seedlings treated with two structurally-related compounds to INA displayed a significant antimicrobial and antioxidant activity. Therefore, INA, SA and structurally-related compounds can be used to increase the amounts of natural antioxidant or antimicrobial compounds in soybean, either to protect the plant directly against pathogens or as a natural source for subsequent isolation of isoflavonoids or bioactive extracts, which have potential application in functional foods or pharmaceutical and personal care products.


Subject(s)
Glycine max/chemistry , Isoflavones/analysis , Isonicotinic Acids/pharmacology , Salicylic Acid/pharmacology , Seedlings/chemistry , Chromatography, High Pressure Liquid , Seedlings/drug effects , Glycine max/drug effects , Time Factors
18.
Bol. latinoam. Caribe plantas med. aromát ; 17(4)jul. 2018. tab, ilus, graf
Article in English | LILACS | ID: biblio-915429

ABSTRACT

Lippia graveolens Kunth (Verbenaceae) is an economically important shrub known in Mexico as Oregano. In this work, the biocidal effect of the hexane extract of L. graveolens leaves was evaluated on two crop pests. Thus, larvae of Spodoptera frugiperda were fed with mixtures of extract and artificial diet. The nematicidal activity was evaluated on juveniles of Meloydogine javanica. Regarding S. frugiperda, quantitative differences between treatments and control were observed in dead pupae, surviving adults, and deformed adults (P < 0.05). All the surviving adults from the extract treatments were deformed. Nematicidal effect was registered, the LC50 and LC90 were 0.672 (0.654-0.690) and 0.965 (0.937-0.998) mg/mL respectively. The extract was characterized by NMR and GC-MS, being thymol the most abundant component (70.6%) in addition to carvacrol (22.8%). The results suggest the consideration of the hexane extract of L. graveolens leaves within the alternatives for the biological control of pests.


Lippia graveolens Kunth (Verbenaceae) es un arbusto con importancia económica conocido en México como Orégano. En éste trabajo se evaluó el efecto biocida del extracto hexánico de hojas L. graveolens sobre dos plagas agrícolas. Así, larvas de S. frugiperda fueron alimentadas con mezclas de dieta artificial y extracto. La actividad nematicida fue evaluada en juveniles de Meloydogine javanica, Respecto a S. frugiperda, se observaron diferencias cuantitativas entre tratamiento y control en cuanto a pupas muertas, adultos sobrevivientes y adultos deformes (P < 0.05). Todos los adultos provenientes de tratamientos con extracto estuvieron malformados. Hubo efecto nematicida, calculándose CL50 y CL90 de 0.672 (0.654-0.690) y 0.965 (0.937-0.998) mg/mL respectivamente. El extracto se caracterizó por RMN y CG-EM. Los compuestos más abundantes fueron timol (70.6%), ademas del carvacrol (22.8%). Los resultados sugieren considerar al extracto hexánico de hojas de L. graveolens dentro de las alternativas para el control biológico de plagas.


Subject(s)
Plant Extracts/pharmacology , Spodoptera/drug effects , Plant Leaves/chemistry , Lippia/chemistry , Antinematodal Agents/pharmacology , Phenols/analysis , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy , Pest Control, Biological , Chromatography, Gas/methods , Verbenaceae , Monoterpenes/analysis , Larva , Antinematodal Agents/chemistry
19.
Molecules ; 23(1)2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29286346

ABSTRACT

Cutaneous leishmaniasis (CL) is a neglected tropical disease, which causes severe skin lesions. Due to the lack of effective vaccines, and toxicity or reduced effectiveness of available drugs in addition to complex and prolonged treatments, there is an urgent need to develop alternatives for the treatment for CL with different mechanisms of action. In our effort to search for new promising hits against Leishmania parasites we prepared 18 acyl hydrazone derivatives of thiochroman-4-ones. Compounds were evaluated for their in vitro antileishmanial activity against the intracellular amastigote form of Leishmania panamensis and cytotoxic activity against human monocytes (U-937 ATCC CRL-1593.2). Our results show that derivatization of the thiochroman-4-ones with acyl hydrazones significantly enhances the antileishmanial activity. Among the compounds tested semicarbazone and thiosemicarbazone derivatives of thioflavanone 19 and 20 displayed the highest antileishmanial activities, with EC50 values of 5.4 and 5.1 µM and low cytotoxicities (100.2 and 50.1 µM respectively), resulting in higher indexes of selectivity (IS).


Subject(s)
Antiprotozoal Agents/pharmacology , Chromans/pharmacology , Hydrazones/pharmacology , Cell Death/drug effects , Flavanones/chemistry , Flavanones/pharmacology , Humans , Leishmania/drug effects , Monocytes/cytology , Monocytes/drug effects
20.
Molecules ; 22(12)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29186046

ABSTRACT

The S-containing heterocyclic compounds benzothiopyrans or thiochromones stand out as having promising biological activities due to their structural relationship with chromones (benzopyrans), which are widely known as privileged scaffolds in medicinal chemistry. In this work, we report the synthesis of 35 thiochromone derivatives and the in vitro antileishmanial and cytotoxic activities. Compounds were tested against intracellular amastigotes of Leishmania panamensis and cytotoxic activity against human monocytes (U-937 ATCC CRL-1593.2). Compounds bearing a vinyl sulfone moiety, 4h, 4i, 4j, 4k, 4l and 4m, displayed the highest antileishmanial activity, with EC50 values lower than 10 µM and an index of selectivity over 100 for compounds 4j and 4l. When the double bond or the sulfone moiety was removed, the activity decreased. Our results show that thiochromones bearing a vinyl sulfone moiety are endowed with high antileishmanial activity and low cytotoxicity.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Thiamine/analogs & derivatives , Antiprotozoal Agents/chemistry , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Humans , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiamine/chemical synthesis , Thiamine/chemistry , Thiamine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...