Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 246: 112300, 2023 09.
Article in English | MEDLINE | ID: mdl-37364353

ABSTRACT

Mycobacterium tuberculosis MhuD catalyzes the oxygenation of heme to mycobilin; experimental data presented here elucidates the novel hydroxylation reaction catalyzed by this enzyme. Analogues for the critical ferric-hydroperoxoheme (MhuD-heme-OOH) intermediate of this enzyme were characterized using UV/Vis absorption (Abs), circular dichroism (CD), and magnetic CD (MCD) spectroscopies. In order to extract electronic transition energies from these spectroscopic data, a novel global fitting model was developed for analysis of UV/Vis Abs, CD, and MCD data. A variant of MhuD was prepared, N7S, which weakens the affinity of heme-bound enzyme for a hydroperoxo analogue, azide, without significantly altering the protein secondary structure. Global fitting of spectroscopic data acquired in this study revealed that the second-sphere N7S substitution perturbs the electronic structure of two analogues for MhuD-heme-OOH: azide-inhibited MhuD (MhuD-heme-N3) and cyanide-inhibited MhuD (MhuD-heme-CN). The ground state electronic structures of MhuD-heme-N3 and MhuD-heme-CN were assessed using variable-temperature, variable-field MCD. Altogether, these data strongly suggest that there is a hydrogen bond between the Asn7 side-chain and the terminal oxygen of the hydroperoxo ligand in MhuD-heme-OOH. As discussed herein, this finding supports a novel hydroxylation reaction mechanism where the Asn7 side-chain guides a transient hydroxyl radical derived from homolysis of the OO bond in MhuD-heme-OOH to the ß- or δ-meso carbon of the porphyrin ligand yielding ß- or δ-meso-hydroxyheme, respectively.


Subject(s)
Mycobacterium tuberculosis , Heme Oxygenase (Decyclizing)/chemistry , Azides , Ligands , Heme/chemistry , Iron/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...