Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Blood ; 143(4): 342-356, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37922495

ABSTRACT

ABSTRACT: Glycoprotein Ibα (GPIbα) is expressed on the surface of platelets and megakaryocytes (MKs) and anchored to the membrane skeleton by filamin A (flnA). Although GPIb and flnA have fundamental roles in platelet biogenesis, the nature of this interaction in megakaryocyte biology remains ill-defined. We generated a mouse model expressing either human wild-type (WT) GPIbα (hGPIbαWT) or a flnA-binding mutant (hGPIbαFW) and lacking endogenous mouse GPIbα. Mice expressing the mutant GPIbα transgene exhibited macrothrombocytopenia with preserved GPIb surface expression. Platelet clearance was normal and differentiation of MKs to proplatelets was unimpaired in hGPIbαFW mice. The most striking abnormalities in hGPIbαFW MKs were the defective formation of the demarcation membrane system (DMS) and the redistribution of flnA from the cytoplasm to the peripheral margin of MKs. These abnormalities led to disorganized internal MK membranes and the generation of enlarged megakaryocyte membrane buds. The defective flnA-GPIbα interaction also resulted in misdirected release of buds away from the vasculature into bone marrow interstitium. Restoring the linkage between flnA and GPIbα corrected the flnA redistribution within MKs and DMS ultrastructural defects as well as restored normal bud size and release into sinusoids. These studies define a new mechanism of macrothrombocytopenia resulting from dysregulated MK budding. The link between flnA and GPIbα is not essential for the MK budding process, however, it plays a major role in regulating the structure of the DMS, bud morphogenesis, and the localized release of buds into the circulation.


Subject(s)
Megakaryocytes , Platelet Glycoprotein GPIb-IX Complex , Thrombocytopenia , Animals , Humans , Mice , Blood Platelets/metabolism , Cytoplasm/metabolism , Filamins/genetics , Filamins/metabolism , Megakaryocytes/metabolism , Morphogenesis , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/metabolism
3.
Blood Adv ; 7(20): 6290-6302, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37624769

ABSTRACT

Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.


Subject(s)
Blood Platelets , Platelet Activation , Blood Platelets/metabolism , Clot Retraction , Oxidative Phosphorylation , Mitochondria/metabolism
4.
N Biotechnol ; 77: 68-79, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37442418

ABSTRACT

In vitro production of blood platelets for transfusion purposes is gaining interest. While platelet production is now possible on a laboratory scale, the challenge is to move towards industrial production. Attaining this goal calls for the development of platelet release devices capable of producing large quantities of platelets. To this end, we have developed a continuous-flow platelet release device composed of five spherical chambers each containing two calibrated cones placed in a staggered configuration. Following perfusion of proplatelet-bearing cultured megakaryocytes, the device achieves a high yield of about 100 bona-fide platelets/megakaryocyte, at a flow rate of ∼80 mL/min. Performances and operating conditions comply with the requirements of large-scale platelet production. Moreover, this device enabled an in-depth analysis of the flow regimes through Computational Fluid Dynamics (CFD). This revealed two new universal parameters to be taken into account for an optimal platelet release: i.e. a periodic hydrodynamic load and a sufficient accumulation of shear stress. An efficient 16 Pa.s shear stress accumulation is obtained in our system at a flow rate of 80 mL/min.


Subject(s)
Blood Platelets , Hydrodynamics , Megakaryocytes , Thrombopoiesis
5.
Blood Adv ; 7(15): 4003-4018, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37171626

ABSTRACT

Megakaryocytes (MKs) are the precursor cells of platelets, located in the bone marrow (BM). Once mature, they extend elongated projections named proplatelets through sinusoid vessels, emerging from the marrow stroma into the circulating blood. Not all signals from the microenvironment that regulate proplatelet formation are understood, particularly those from the BM biomechanics. We sought to investigate how MKs perceive and adapt to modifications of the stiffness of their environment. Although the BM is one of the softest tissue of the body, its rigidification results from excess fibronectin (FN), and other matrix protein deposition occur upon myelofibrosis. Here, we have shown that mouse MKs are able to detect the stiffness of a FN-coated substrate and adapt their morphology accordingly. Using a polydimethylsiloxane substrate with stiffness varying from physiological to pathological marrow, we found that a stiff matrix favors spreading, intracellular contractility, and FN fibrils assembly at the expense of proplatelet formation. Itgb3, but not Itgb1, is required for stiffness sensing, whereas both integrins are involved in fibrils assembly. In contrast, soft substrates promote proplatelet formation in an Itgb3-dependent manner, consistent with the ex vivo decrease in proplatelet formation and the in vivo decrease in platelet number in Itgb3-deficient mice. Our findings demonstrate the importance of environmental stiffness for MK functions with potential pathophysiological implications during pathologies that deregulate FN deposition and modulate stiffness in the marrow.


Subject(s)
Fibronectins , Megakaryocytes , Animals , Mice , Blood Platelets/metabolism , Bone Marrow , Fibronectins/metabolism , Megakaryocytes/metabolism , Platelet Count
6.
Res Pract Thromb Haemost ; 7(1): 100006, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36970736

ABSTRACT

Background: The platelet population is heterogeneous, with different subsets that differ on the basis of their function and reactivity. An intrinsic factor participating in this difference of reactivity could be the platelet age. The lack of relevant tools allowing a formal identification of young platelets prevents so far to draw solid conclusions regarding platelet reactivity. We recently reported that human leukocyte antigen-I (HLA-I) molecules are more expressed on human young platelets. Objectives: The aim of this study was to assess platelet reactivity according to their age based on HLA-I expression level. Methods: Platelet activation was assessed by flow cytometry (FC) for different platelet subsets based on their HLA-I expression. These populations were further cell sorted and their intrinsic properties were determined by FC and electron microscopy (EM). Statistical analyses were performed with GraphPad Prism 5.02 software using two-way ANOVA followed by a Tukey post hoc test. Results: HLA-I expression level allowed the identification of 3 platelet subpopulations regarding to their age (HLA low, dim, and high). HLA-I was reliable to guide platelet cell sorting and highlighted the features of young platelets in the HLA-Ihigh population. In response to different soluble agonists, HLA-Ihigh platelets were the most reactive subset as shown by the level of P-selectin secretion and fibrinogen binding assessed by flow cytometry. Moreover, the highest capacity of HLA-Ihigh platelets to simultaneously express annexin-V and von Willebrand factor or activated αIIbß3 after coactivation with TRAP and CRP indicated that the procoagulant feature of platelets was age-related. Conclusion: The young HLA-Ihigh population is the most reactive and prone to become procoagulant. These results open up new perspectives to investigate deeply the role of young and old platelets.

7.
Res Pract Thromb Haemost ; 7(1): 100004, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36970741

ABSTRACT

Background: Blood platelet Ca2+ stores are regulated by 2 Ca2+-ATPases (SERCA2b and SERCA3). On thrombin stimulation, nicotinic acid adenosine dinucleotide phosphate mobilizes SERCA3-dependent stores, inducing early adenosine 5'-diphosphate (ADP) secretion, potentiating later SERCA2b-dependent secretion. Objectives: The aim of this study was to identify which ADP P2 purinergic receptor (P2Y1 and/or P2Y12) is(are) involved in the amplification of platelet secretion dependent on the SERCA3-dependent Ca2+ mobilization pathway (SERCA3 stores mobilization) as triggered by low concentration of thrombin. Methods: The study used the pharmacologic antagonists MRS2719 and AR-C69931MX, of the P2Y1 and P2Y12, respectively, as well as Serca3 -/- mice and mice exhibiting platelet lineage-specific inactivation of the P2Y1 or P2Y12 genes. Results: We found that in mouse platelets, pharmacological blockade or gene inactivation of P2Y12 but not of P2Y1 led to a marked inhibition of ADP secretion after platelet stimulation with low concentration of thrombin. Likewise, in human platelets, pharmacological inhibition of P2Y12 but not of P2Y1 alters amplification of thrombin-elicited secretion through SERCA2b stores mobilization. Finally, we show that early SERCA3 stores secretion of ADP is a dense granule secretion, based on parallel adenosine triphosphate and serotonin early secretion. Furthermore, early secretion involves a single granule, based on the amount of adenosine triphosphate released. Conclusion: Altogether, these results show that at low concentrations of thrombin, SERCA3- and SERCA2b-dependent Ca2+ mobilization pathways cross-talk via ADP and activation of the P2Y12, and not the P2Y1 ADP receptor. The relevance in hemostasis of the coupling of the SERCA3 and the SERCA2b pathways is reviewed.

8.
Thromb Res ; 221: 137-148, 2023 01.
Article in English | MEDLINE | ID: mdl-36376109

ABSTRACT

Severe COVID-19 has been associated with a high rate of thrombotic events but also of bleeding events, particularly when the level of prophylactic anticoagulation was increased. Data on the contribution of platelets to these thrombotic events are discordant between reports, while the involvement of platelets in bleeding events has never been investigated. The objective of the present study was to assess platelet function during the first week of ICU hospitalization in patients with severe COVID-19 pneumonia. A total of 35 patients were prospectively included and blood samples were drawn on day (D) 0, D2 and D7. COVID-19 pneumonia was severe with a median PaO2/FiO2 ratio of 91 [68-119] on D0. Platelets from these patients showed evidence of pre-activation and exhaustion with a significant reduction in the surface expression of GPVI, GPIb and GPIIbIIIa, together with a decrease in serotonin content. Platelets from patients with severe COVID-19 were hyporesponsive with a reduced maximal aggregation response to several platelet agonists and decreased adhesion to immobilized fibrinogen. Aggregation of washed platelets and plasma substitution experiments indicated that a plasma factor was at least partially responsible for this hyporeactivity of platelets. Blood flow experiments showed that severe COVID-19 platelets formed smaller, less stable aggregates on a collagen-coated surface, which could explain why some patients develop bleeding events. These findings should prompt us to carefully evaluate the risks and benefits of high-dose prophylactic anticoagulation, and to decrease the level of anticoagulation once the initial phase of the disease has resolved. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04359992.


Subject(s)
COVID-19 , Thrombosis , Humans , Anticoagulants/metabolism , Blood Coagulation , Blood Platelets/metabolism , COVID-19/complications , Hemorrhage/metabolism , Platelet Aggregation , Prospective Studies
9.
Semin Cell Dev Biol ; 137: 63-73, 2023 03 15.
Article in English | MEDLINE | ID: mdl-35148939

ABSTRACT

Blood platelets are small non-nucleated cellular fragments that prevent and stop hemorrhages. They are produced in the bone marrow by megakaryocytes through megakaryopoiesis. This intricate process involves profound microtubule rearrangements culminating in the formation of a unique circular sub-membranous microtubule array, the marginal band, which supports the typical disc-shaped morphology of platelets. Mechanistically, these processes are thought to be controlled by a specific tubulin code. In this review, we summarize the current knowledge on the key isotypes, notably ß1-, α4A- and α8-tubulin, and putative post-translational modifications, involved in platelet and marginal band formation. Additionally, we provide a provisional list of microtubule-associated proteins (MAPs) involved in these processes and a survey of tubulin variants identified in patients presenting defective platelet production. A comprehensive characterization of the platelet tubulin code and the identification of essential MAPs may be expected in the near future to shed new light on a very specialized microtubule assembly process with applications in platelet diseases and transfusion.


Subject(s)
Megakaryocytes , Tubulin , Humans , Tubulin/genetics , Tubulin/metabolism , Megakaryocytes/metabolism , Microtubules/metabolism , Blood Platelets/metabolism , Protein Processing, Post-Translational
11.
Blood ; 140(21): 2290-2299, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36026602

ABSTRACT

Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific ß1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for ß1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride-injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and ß-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.


Subject(s)
Blood Coagulation Disorders , Tubulin , Mice , Animals , Blood Platelets , Hemostasis , Microtubules , von Willebrand Factor
12.
Blood Adv ; 6(16): 4834-4846, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35728058

ABSTRACT

Blood flow is a major regulator of hemostasis and arterial thrombosis. The current view is that low and intermediate flows occur in intact healthy vessels, whereas high shear levels (>2000 s-1) are reached in stenosed arteries, notably during thrombosis. To date, the shear rates occurring at the edge of a lesion in an otherwise healthy vessel are nevertheless unknown. The aim of this work was to measure the shear rates prevailing in wounds in a context relevant to hemostasis. Three models of vessel puncture and transection were developed and characterized for a study that was implemented in mice and humans. Doppler probe measurements supplemented by a computational model revealed that shear rates at the edge of a wound reached high values, with medians of 22 000 s-1, 25 000 s-1, and 7000 s-1 after puncture of the murine carotid artery, aorta, or saphenous vein, respectively. Similar shear levels were observed after transection of the mouse spermatic artery. These results were confirmed in a human venous puncture model, where shear rates in a catheter implanted in the cubital vein reached 2000 to 27 000 s-1. In all models, the high shear conditions were accompanied by elevated levels of elongational flow exceeding 1000 s-1. In the puncture model, the shear rates decreased steeply with increasing injury size. This phenomenon could be explained by the low hydrodynamic resistance of the injuries as compared with that of the downstream vessel network. These findings show that high shear rates (>3000 s-1) are relevant to hemostasis and not exclusive to arterial thrombosis.


Subject(s)
Hemostasis , Thrombosis , Animals , Arteries/pathology , Humans , Mice , Stress, Mechanical , Thrombosis/pathology
13.
Sci Rep ; 12(1): 6255, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428815

ABSTRACT

Bone marrow megakaryocytes (MKs) undergo a maturation involving contacts with the microenvironment before extending proplatelets through sinusoids to deliver platelets in the bloodstream. We demonstrated that MKs assemble linear F-actin-enriched podosomes on collagen I fibers. Microscopy analysis evidenced an inverse correlation between the number of dot-like versus linear podosomes over time. Confocal videomicroscopy confirmed that they derived from each-other. This dynamics was dependent on myosin IIA. Importantly, MKs progenitors expressed the Tks4/5 adaptors, displayed a strong gelatinolytic ability and did not form linear podosomes. While maturing, MKs lost Tks expression together with digestive ability. However, those MKs were still able to remodel the matrix by exerting traction on collagen I fibers through a collaboration between GPVI, ß1 integrin and linear podosomes. Our data demonstrated that a change in structure and composition of podosomes accounted for the shift of function during megakaryopoiesis. These data highlight the fact that members of the invadosome family could correspond to different maturation status of the same entity, to adapt to functional responses required by differentiation stages of the cell that bears them.


Subject(s)
Megakaryocytes , Podosomes , Blood Platelets/metabolism , Collagen Type I/metabolism , Megakaryocytes/metabolism , Thrombopoiesis
14.
Blood Adv ; 6(18): 5279-5284, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35404999

ABSTRACT

While loss-of-function variants in the WAS gene are associated with Wiskott-Aldrich syndrome and lead to microthrombocytopenia, gain-of-function variants of WAS are associated with X-linked neutropenia (XLN) and the absence of microthrombocytopenia. Only a few XLN families have been reported so far, and their platelet phenotype was not described in detail. To date, no renal involvement was described in XLN. In the present study, we report exome sequencing of individuals from 3 generations of a family with a dominant disease combining neutropenia, macrothrombocytopenia, and renal failure. We identified a heterozygous missense gain-of-function variant in the WAS gene (c.881T>C, p.I294T) that segregates with the disease and is already known to cause XLN. There was no pathogenic variant in MYH9, TUBB1, or ACTN1. This is the first report of a WAS gain-of-function variant associated with both the hematological phenotype of XLN (neutropenia, macrothrombocytopenia) and renal disease (proteinuria, renal failure) with glomerular tip lesion hyalinosis and actin condensations in effaced podocytes foot processes.


Subject(s)
Neutropenia , Renal Insufficiency , Wiskott-Aldrich Syndrome , Actins/genetics , Gain of Function Mutation , Hearing Loss, Sensorineural , Humans , Mutation , Myosin Heavy Chains/genetics , Neutropenia/genetics , Thrombocytopenia/congenital , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome Protein/genetics
15.
JCI Insight ; 7(8)2022 04 22.
Article in English | MEDLINE | ID: mdl-35290242

ABSTRACT

Platelet homeostasis is dependent on a tight regulation of both platelet production and clearance. The small GTPase Rap1 mediates platelet adhesion and hemostatic plug formation. However, Rap1 signaling is also critical for platelet homeostasis as both Rap1 deficiency and uninhibited Rap1 signaling lead to marked thrombocytopenia in mice. Here, we investigated the mechanism by which deficiency in Rasa3, a critical negative regulator of Rap1, causes macrothrombocytopenia in mice. Despite marked morphological and ultrastructural abnormalities, megakaryocytes in hypomorphic Rasa3hlb/hlb (R3hlb/hlb) or Rasa3-/- mice demonstrated robust proplatelet formation in vivo, suggesting that defective thrombopoiesis is not the main cause of thrombocytopenia. Rather, we observed that R3hlb/hlb platelets became trapped in the spleen marginal zone/red pulp interface, with evidence of platelet phagocytosis by macrophages. Clearance of mutant platelets was also observed in the liver, especially in splenectomized mice. Platelet count and platelet life span in Rasa3-mutant mice were restored by genetic or pharmacological approaches to inhibit the Rap1/talin1/αIIbß3 integrin axis. A similar pattern of splenic clearance was observed in mice injected with anti-αIIbß3 but not anti-glycoprotein Ibα platelet-depleting antibodies. In summary, we describe a potentially novel, integrin-based mechanism of platelet clearance that could be critical for our understanding of select inherited and acquired thrombocytopenias.


Subject(s)
Thrombocytopenia , Thrombopoiesis , Animals , Blood Platelets , GTPase-Activating Proteins/genetics , Integrins , Megakaryocytes , Mice
16.
J Thromb Haemost ; 20(2): 461-469, 2022 02.
Article in English | MEDLINE | ID: mdl-34704371

ABSTRACT

BACKGROUND: In the panel of genes commonly associated with inherited macrothrombocytopenia, an important fraction encodes key cytoskeletal proteins such as tubulin isotypes, the building blocks of microtubules. Macrothrombocytopenia-causing mutations have been identified in the TUBB1 and TUBA4A genes, emphasizing their importance in the formation of platelets and their marginal band, a unique microtubule ring-like structure that supports the platelet typical disc-shaped morphology. This raised the hypothesis that other tubulin isotypes normally expressed in platelets could play a similar role in their formation. OBJECTIVES: To assess whether tubulin isotype genes other than TUBA4A and TUBB1 could be implicated in inherited macrothrombocytopenia. METHODS: We used high throughput sequencing to screen a cohort of 448 French blood donors with mild thrombocytopenia for mutations in a panel of selected genes known or suspected to be involved in platelet biogenesis. RESULTS: We identified six distinct novel mutations in TUBA8, which encodes the most-divergent α-tubulin, as the causative determinant of macrothrombocytopenia and platelet marginal band defects. Functionally, all TUBA8 mutations were found to fully or partially inhibit the incorporation of the mutated α8-tubulin in the microtubule network. CONCLUSION: This study provides strong support for a key role of multiple tubulin genes in platelet biogenesis by discovering variants in a tubulin gene that was previously not known to be important for platelets.


Subject(s)
Thrombocytopenia , Tubulin , Blood Platelets/metabolism , Humans , Mutation , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Tubulin/genetics
17.
Thromb Haemost ; 122(5): 767-776, 2022 May.
Article in English | MEDLINE | ID: mdl-34598304

ABSTRACT

OBJECTIVE: Integrins are key regulators of various platelet functions. The pathophysiological importance of most platelet integrins has been investigated, with the exception of α5ß1, a receptor for fibronectin. The aim of this study was to characterize the role of α5ß1 in megakaryopoiesis, platelet function, and to determine its importance in hemostasis and arterial thrombosis. APPROACH AND RESULTS: We generated a mouse strain deficient for integrin α5ß1 on megakaryocytes and platelets (PF4Cre-α5-/-). PF4Cre-α5-/- mice were viable, fertile, and presented no apparent signs of abnormality. Megakaryopoiesis appears unaltered as evidence by a normal megakaryocyte morphology and development, which is in agreement with a normal platelet count. Expression of the main platelet receptors and the response of PF4Cre-α5-/- platelets to a series of agonists were all completely normal. Adhesion and aggregation of PF4Cre-α5-/- platelets under shear flow on fibrinogen, laminin, or von Willebrand factor were unimpaired. In contrast, PF4Cre-α5-/- platelets displayed a marked decrease in adhesion, activation, and aggregation on fibrillar cellular fibronectin and collagen. PF4Cre-α5-/- mice presented no defect in a tail-bleeding time assay and no increase in inflammatory bleeding in a reverse passive Arthus model and a lipopolysaccharide pulmonary inflammation model. Finally, no defects were observed in three distinct experimental models of arterial thrombosis based on ferric chloride-induced injury of the carotid artery, mechanical injury of the abdominal aorta, or laser-induced injury of mesenteric vessels. CONCLUSION: In summary, this study shows that platelet integrin α5ß1 is a key receptor for fibrillar cellular fibronectin but is dispensable in hemostasis and arterial thrombosis.


Subject(s)
Platelet Adhesiveness , Thrombosis , Animals , Blood Platelets/metabolism , Fibronectins/metabolism , Hemostasis , Humans , Integrin alpha5beta1/genetics , Integrin alpha5beta1/metabolism , Integrins/metabolism , Mice , Thrombosis/metabolism
19.
J Vis Exp ; (175)2021 09 08.
Article in English | MEDLINE | ID: mdl-34570102

ABSTRACT

Differentiation and maturation of megakaryocytes occur in close association with the cellular and extracellular components of the bone marrow. These processes are characterized by the gradual appearance of essential structures in the megakaryocyte cytoplasm such as a polyploid and polylobulated nucleus, an internal membrane network called demarcation membrane system (DMS) and the dense and alpha granules that will be found in circulating platelets. In this article, we describe a standardized protocol for the in situ ultrastructural study of murine megakaryocytes using transmission electron microscopy (TEM), allowing for the identification of key characteristics defining their maturation stage and cellular density in the bone marrow. Bone marrows are flushed, fixed, dehydrated in ethanol, embedded in plastic resin, and mounted for generating cross-sections. Semi-thin and thin sections are prepared for histological and TEM observations, respectively. This method can be used for any bone marrow cell, in any EM facility and has the advantage of using small sample sizes allowing for the combination of several imaging approaches on the same mouse.


Subject(s)
Blood Platelets , Megakaryocytes , Animals , Bone Marrow , Bone Marrow Cells , Mice , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...