Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(26): 47867-47878, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558705

ABSTRACT

The development of the broad-bandwidth photon sources emitting in the soft X-ray range has attracted great attention for a long time due to the possible applications in high-resolution spectroscopy, nano-metrology, and material sciences. A high photon flux accompanied by a broad, smooth spectrum is favored for the applications such as near-edge X-ray absorption fine structure (NEXAFS), extended X-ray absorption fine structure (EXAFS), or XUV/X-ray coherence tomography (XCT). So far, either large-scale facilities or technologically challenging systems providing only limited photon flux in a single shot dominate the suitable sources. Here, we present a soft, broad-band (1.5 nm - 10.7 nm) soft X-ray source. The source is based on the interaction of very intense laser pulses with a target formed by a cluster mixture. A photon yield of 2.4 × 1014 photons/pulse into 4π (full space) was achieved with a medium containing Xe clusters of moderate-size mixed with a substantial amount of extremely large ones. It is shown that such a cluster mixture enhances the photon yield in the soft X-ray range by roughly one order of magnitude. The size of the resulting source is not beneficial (≤500 µm but this deficit is compensated by a specific spectral structure of its emission fulfilling the specific needs of the spectroscopic (broad spectrum and high signal dynamics) and metrological applications (broad and smoothed spectrum enabling a sub-nanometer resolution limit for XCT).

2.
Opt Express ; 23(9): 12321-7, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969317

ABSTRACT

Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·10(19) W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generation becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.


Subject(s)
Aluminum Oxide/chemistry , Lasers , Materials Testing/methods , Spectrum Analysis/instrumentation , Titanium/chemistry , Equipment Design , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...