Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 112(11): E1288-96, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25737542

ABSTRACT

BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes. We found that high expression of the proapoptotic gene Bcl2-interacting mediator of cell death (BIM) predicts sensitivity to ABT-263. In particular, SCLC cell lines possessed greater BIM transcript levels than most other solid tumors and are among the most sensitive to ABT-263. However, a subset of relatively resistant SCLC cell lines has concomitant high expression of the antiapoptotic myeloid cell leukemia 1 (MCL-1). Whereas ABT-263 released BIM from complexes with BCL-2 and BCL-XL, high expression of MCL-1 sequestered BIM released from BCL-2 and BCL-XL, thereby abrogating apoptosis. We found that SCLCs were sensitized to ABT-263 via TORC1/2 inhibition, which led to reduced MCL-1 protein levels, thereby facilitating BIM-mediated apoptosis. AZD8055 and ABT-263 together induced marked apoptosis in vitro, as well as tumor regressions in multiple SCLC xenograft models. In a Tp53; Rb1 deletion genetically engineered mouse model of SCLC, the combination of ABT-263 and AZD8055 significantly repressed tumor growth and induced tumor regressions compared with either drug alone. Furthermore, in a SCLC patient-derived xenograft model that was resistant to ABT-263 alone, the addition of AZD8055 induced potent tumor regression. Therefore, addition of a TORC1/2 inhibitor offers a therapeutic strategy to markedly improve ABT-263 activity in SCLC.


Subject(s)
Aniline Compounds/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Sulfonamides/therapeutic use , Aniline Compounds/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Cell Line, Tumor , Dose-Response Relationship, Drug , Genetic Engineering , Humans , Inhibitory Concentration 50 , Lung Neoplasms/pathology , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Membrane Proteins/metabolism , Mice , Morpholines/pharmacology , Morpholines/therapeutic use , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins/metabolism , Remission Induction , Small Cell Lung Carcinoma/pathology , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
2.
Cancer Discov ; 4(1): 42-52, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24163374

ABSTRACT

Colorectal cancers harboring KRAS or BRAF mutations are refractory to current targeted therapies. Using data from a high-throughput drug screen, we have developed a novel therapeutic strategy that targets the apoptotic machinery using the BCL-2 family inhibitor ABT-263 (navitoclax) in combination with a TORC1/2 inhibitor, AZD8055. This combination leads to efficient apoptosis specifically in KRAS- and BRAF-mutant but not wild-type (WT) colorectal cancer cells. This specific susceptibility results from TORC1/2 inhibition leading to suppression of MCL-1 expression in mutant, but not WT, colorectal cancers, leading to abrogation of BIM/MCL-1 complexes. This combination strategy leads to tumor regressions in both KRAS-mutant colorectal cancer xenograft and genetically engineered mouse models of colorectal cancer, but not in the corresponding KRAS-WT colorectal cancer models. These data suggest that the combination of BCL-2/BCL-XL inhibitors with TORC1/2 inhibitors constitutes a promising targeted therapy strategy to treat these recalcitrant cancers.


Subject(s)
Aniline Compounds/therapeutic use , Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Morpholines/therapeutic use , Multiprotein Complexes/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Sulfonamides/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Mutant Strains , Mice, Nude , Morpholines/pharmacology , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras) , Sulfonamides/pharmacology , bcl-X Protein/antagonists & inhibitors , ras Proteins/genetics
3.
PLoS Genet ; 9(8): e1003727, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24009521

ABSTRACT

Human cancer genomes are highly complex, making it challenging to identify specific drivers of cancer growth, progression, and tumor maintenance. To bypass this obstacle, we have applied array comparative genomic hybridization (array CGH) to zebrafish embryonal rhabdomyosaroma (ERMS) and utilized cross-species comparison to rapidly identify genomic copy number aberrations and novel candidate oncogenes in human disease. Zebrafish ERMS contain small, focal regions of low-copy amplification. These same regions were commonly amplified in human disease. For example, 16 of 19 chromosomal gains identified in zebrafish ERMS also exhibited focal, low-copy gains in human disease. Genes found in amplified genomic regions were assessed for functional roles in promoting continued tumor growth in human and zebrafish ERMS--identifying critical genes associated with tumor maintenance. Knockdown studies identified important roles for Cyclin D2 (CCND2), Homeobox Protein C6 (HOXC6) and PlexinA1 (PLXNA1) in human ERMS cell proliferation. PLXNA1 knockdown also enhanced differentiation, reduced migration, and altered anchorage-independent growth. By contrast, chemical inhibition of vascular endothelial growth factor (VEGF) signaling reduced angiogenesis and tumor size in ERMS-bearing zebrafish. Importantly, VEGFA expression correlated with poor clinical outcome in patients with ERMS, implicating inhibitors of the VEGF pathway as a promising therapy for improving patient survival. Our results demonstrate the utility of array CGH and cross-species comparisons to identify candidate oncogenes essential for the pathogenesis of human cancer.


Subject(s)
Comparative Genomic Hybridization , Neoplasms/genetics , Oncogenes , Rhabdomyosarcoma, Embryonal/genetics , Zebrafish/genetics , Animals , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , In Situ Hybridization, Fluorescence , Neoplasms/etiology , Oligonucleotide Array Sequence Analysis , Rhabdomyosarcoma, Embryonal/pathology
4.
Nucleic Acids Res ; 41(Database issue): D955-61, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23180760

ABSTRACT

Alterations in cancer genomes strongly influence clinical responses to treatment and in many instances are potent biomarkers for response to drugs. The Genomics of Drug Sensitivity in Cancer (GDSC) database (www.cancerRxgene.org) is the largest public resource for information on drug sensitivity in cancer cells and molecular markers of drug response. Data are freely available without restriction. GDSC currently contains drug sensitivity data for almost 75 000 experiments, describing response to 138 anticancer drugs across almost 700 cancer cell lines. To identify molecular markers of drug response, cell line drug sensitivity data are integrated with large genomic datasets obtained from the Catalogue of Somatic Mutations in Cancer database, including information on somatic mutations in cancer genes, gene amplification and deletion, tissue type and transcriptional data. Analysis of GDSC data is through a web portal focused on identifying molecular biomarkers of drug sensitivity based on queries of specific anticancer drugs or cancer genes. Graphical representations of the data are used throughout with links to related resources and all datasets are fully downloadable. GDSC provides a unique resource incorporating large drug sensitivity and genomic datasets to facilitate the discovery of new therapeutic biomarkers for cancer therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Databases, Genetic , Neoplasms/genetics , Cell Line, Tumor , Computer Graphics , Genes, Neoplasm , Genetic Markers , Genomics , Humans , Internet , Mutation , Neoplasms/drug therapy
5.
Nature ; 483(7391): 570-5, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22460902

ABSTRACT

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.


Subject(s)
Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Genes, Neoplasm/genetics , Genetic Markers/genetics , Genome, Human/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/genetics , Genomics , Humans , Indoles/pharmacology , Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Pharmacogenetics , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology
7.
Genes Dev ; 24(23): 2654-65, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21062900

ABSTRACT

To define the functional pathways regulating epithelial cell migration, we performed a genome-wide RNAi screen using 55,000 pooled lentiviral shRNAs targeting ∼11,000 genes, selecting for transduced cells with increased motility. A stringent validation protocol generated a set of 31 genes representing diverse pathways whose knockdown dramatically enhances cellular migration. Some of these pathways share features of epithelial-to-mesenchymal transition (EMT), and together they implicate key regulators of transcription, cellular signaling, and metabolism, as well as novel modulators of cellular trafficking, such as DLG5. In delineating downstream pathways mediating these migration phenotypes, we observed universal activation of ERKs and a profound dependence on their RSK effectors. Pharmacological inhibition of RSK dramatically suppresses epithelial cell migration induced by knockdown of all 31 genes, suggesting that convergence of diverse migratory pathways on this kinase may provide a therapeutic opportunity in disorders of cell migration, including cancer metastasis.


Subject(s)
Cell Movement/genetics , Genome-Wide Association Study , RNA Interference , Ribosomal Protein S6 Kinases/metabolism , Cell Line, Tumor , Epithelial Cells/cytology , Humans , Membrane Proteins/metabolism , Mesoderm/cytology , Reproducibility of Results , Tumor Suppressor Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 105(49): 19432-7, 2008 Dec 09.
Article in English | MEDLINE | ID: mdl-19050079

ABSTRACT

Gene expression profiles provide an opportunity to dissect the heterogeneity of solid tumors, including colon cancer, to improve prognosis and predict response to therapies. Bayesian binary regression methods were used to generate a signature of disease recurrence in patients with resected early stage colon cancer validated in an independent cohort. A 50-gene signature was developed that effectively distinguished early stage colon cancer patients with a low or high risk of disease recurrence. RT-PCR analysis of the 50-gene signature validated 9 of the top 10 differentially expressed genes. When applied to two independent validation cohorts of 55 and 73 patients, the 50-gene model accurately predicted recurrence. Standard Kaplan-Meier survival analysis confirmed the prognostic accuracy (P < 0.01, log rank), as did multivariate Cox proportional hazard models. We tested potential targeted therapeutic options for patients at high risk for disease recurrence and found a clinically important relationship between sensitivity to celecoxib, LY-294002 (PI3kinase inhibitor), retinol, and sulindac in colon cancer cell lines expressing the poor prognostic phenotype (P < 0.01, t test), which performed better than standard chemotherapy (5-FU and oxaliplatin). We present a genomic strategy in early stage colon cancer to identify patients at highest risk of recurrence. An ability to move beyond current staging by refining the estimation of prognosis in early stage colon cancer also has implications for individualized therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Neoplasm Recurrence, Local , Oligonucleotide Array Sequence Analysis , Animals , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/epidemiology , Colonic Neoplasms/genetics , Drug Resistance, Neoplasm , Genetic Predisposition to Disease/epidemiology , Genomics , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/genetics , Phenotype , Predictive Value of Tests , Prognosis , Risk Factors
9.
PLoS Comput Biol ; 4(2): e28, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18282083

ABSTRACT

Cancer is a heterogeneous disease often requiring a complexity of alterations to drive a normal cell to a malignancy and ultimately to a metastatic state. Certain genetic perturbations have been implicated for initiation and progression. However, to a great extent, underlying mechanisms often remain elusive. These genetic perturbations are most likely reflected by the altered expression of sets of genes or pathways, rather than individual genes, thus creating a need for models of deregulation of pathways to help provide an understanding of the mechanisms of tumorigenesis. We introduce an integrative hierarchical analysis of tumor progression that discovers which a priori defined pathways are relevant either throughout or in particular steps of progression. Pathway interaction networks are inferred for these relevant pathways over the steps in progression. This is followed by the refinement of the relevant pathways to those genes most differentially expressed in particular disease stages. The final analysis infers a gene interaction network for these refined pathways. We apply this approach to model progression in prostate cancer and melanoma, resulting in a deeper understanding of the mechanisms of tumorigenesis. Our analysis supports previous findings for the deregulation of several pathways involved in cell cycle control and proliferation in both cancer types. A novel finding of our analysis is a connection between ErbB4 and primary prostate cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction , Computer Simulation , Disease Progression , Humans , Male
10.
Bioinformatics ; 22(14): e108-16, 2006 Jul 15.
Article in English | MEDLINE | ID: mdl-16873460

ABSTRACT

MOTIVATION: Gene expression profiling experiments in cell lines and animal models characterized by specific genetic or molecular perturbations have yielded sets of genes annotated by the perturbation. These gene sets can serve as a reference base for interrogating other expression datasets. For example, a new dataset in which a specific pathway gene set appears to be enriched, in terms of multiple genes in that set evidencing expression changes, can then be annotated by that reference pathway. We introduce in this paper a formal statistical method to measure the enrichment of each sample in an expression dataset. This allows us to assay the natural variation of pathway activity in observed gene expression data sets from clinical cancer and other studies. RESULTS: Validation of the method and illustrations of biological insights gleaned are demonstrated on cell line data, mouse models, and cancer-related datasets. Using oncogenic pathway signatures, we show that gene sets built from a model system are indeed enriched in the model system. We employ ASSESS for the use of molecular classification by pathways. This provides an accurate classifier that can be interpreted at the level of pathways instead of individual genes. Finally, ASSESS can be used for cross-platform expression models where data on the same type of cancer are integrated over different platforms into a space of enrichment scores. AVAILABILITY: Versions are available in Octave and Java (with a graphical user interface). Software can be downloaded at http://people.genome.duke.edu/assess.


Subject(s)
Algorithms , Chromosome Mapping/methods , Gene Expression Profiling/methods , Gene Expression/physiology , Models, Biological , Proteome/metabolism , Signal Transduction/physiology , Models, Statistical , Proteome/genetics , Sample Size
SELECTION OF CITATIONS
SEARCH DETAIL
...