Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750165

ABSTRACT

For decades, infrared (IR) spectroscopy has advanced on two distinct frontiers: enhancing spatial resolution and broadening spectroscopic information. Although atomic force microscopy (AFM)-based IR microscopy overcomes Abbe's diffraction limit and reaches sub-10 nm spatial resolutions, time-domain two-dimensional IR spectroscopy (2DIR) provides insights into molecular structures, mode coupling and energy transfers. Here we bridge the boundary between these two techniques and develop AFM-2DIR nanospectroscopy. Our method offers the spatial precision of AFM in combination with the rich spectroscopic information provided by 2DIR. This approach mechanically detects the sample's photothermal responses to a tip-enhanced femtosecond IR pulse sequence and extracts spatially resolved spectroscopic information via FFTs. In a proof-of-principle experiment, we elucidate the anharmonicity of a carbonyl vibrational mode. Further, leveraging the near-field photons' high momenta from the tip enhancement for phase matching, we photothermally probe hyperbolic phonon polaritons in isotope-enriched h10BN. Our measurements unveil an energy transfer between phonon polaritons and phonons, as well as among different polariton modes, possibly aided by scattering at interfaces. The AFM-2DIR nanospectroscopy enables the in situ investigations of vibrational anharmonicity, coupling and energy transfers in heterogeneous materials and nanostructures, especially suitable for unravelling the relaxation process in two-dimensional materials at IR frequencies.

2.
Adv Mater ; : e2401349, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657644

ABSTRACT

Phonon polaritons, the hybrid quasiparticles resulting from the coupling of photons and lattice vibrations, have gained significant attention in the field of layered van der Waals heterostructures. Particular interest has been paid to hetero-bicrystals composed of molybdenum oxide (MoO3) and hexagonal boron nitride (hBN), which feature polariton dispersion tailorable via avoided polariton mode crossings. In this work, we systematically study the polariton eigenmodes in MoO3-hBN hetero-bicrystals self-assembled on ultrasmooth gold using synchrotron infrared nanospectroscopy. We experimentally demonstrate that the spectral gap in bicrystal dispersion and corresponding regimes of negative refraction can be tuned by material layer thickness, and we quantitatively match these results with a simple analytic model. We also investigate polaritonic cavity modes and polariton propagation along "forbidden" directions in our microscale bicrystals, which arise from the finite in-plane dimension of the synthesized MoO3 micro-ribbons. Our findings shed light on the unique dispersion properties of polaritons in van der Waals heterostructures and pave the way for applications leveraging deeply sub-wavelength mid-infrared light matter interactions. This article is protected by copyright. All rights reserved.

3.
Proc Natl Acad Sci U S A ; 121(12): e2319465121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38466854

ABSTRACT

In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion. By employing time-domain near-field interferometry to analyze ultrafast hyperbolic ray pulses in thin hBN, we showed that their zigzag reflection trajectories bound within the hBN layer create an illusion of backward-moving and leaping behavior of pulse fringes. These rays result from the coherent beating of hyperbolic waveguide modes but could be mistakenly interpreted as negative group velocities and backward energy flow. Moreover, the zigzag reflections produce nanoscale (60 nm) and ultrafast (40 fs) spatiotemporal optical vortices along the trajectory, presenting opportunities to chiral spatiotemporal control of light-matter interactions. Supported by experimental evidence, our simulations highlight the potential of hyperbolic ray reflections for molecular vibrational absorption nanospectroscopy. The results pave the way for miniaturized, on-chip optical spectrometers, and ultrafast optical manipulation.

4.
Nat Mater ; 23(4): 499-505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321241

ABSTRACT

Compressing light into nanocavities substantially enhances light-matter interactions, which has been a major driver for nanostructured materials research. However, extreme confinement generally comes at the cost of absorption and low resonator quality factors. Here we suggest an alternative optical multimodal confinement mechanism, unlocking the potential of hyperbolic phonon polaritons in isotopically pure hexagonal boron nitride. We produce deep-subwavelength cavities and demonstrate several orders of magnitude improvement in confinement, with estimated Purcell factors exceeding 108 and quality factors in the 50-480 range, values approaching the intrinsic quality factor of hexagonal boron nitride polaritons. Intriguingly, the quality factors we obtain exceed the maximum predicted by impedance-mismatch considerations, indicating that confinement is boosted by higher-order modes. We expect that our multimodal approach to nanoscale polariton manipulation will have far-reaching implications for ultrastrong light-matter interactions, mid-infrared nonlinear optics and nanoscale sensors.

5.
Nat Commun ; 15(1): 104, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168074

ABSTRACT

Spin defects in van der Waals materials offer a promising platform for advancing quantum technologies. Here, we propose and demonstrate a powerful technique based on isotope engineering of host materials to significantly enhance the coherence properties of embedded spin defects. Focusing on the recently-discovered negatively charged boron vacancy center ([Formula: see text]) in hexagonal boron nitride (hBN), we grow isotopically purified h10B15N crystals. Compared to [Formula: see text] in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded [Formula: see text] spin transitions as well as extended coherence time T2 and relaxation time T1. For quantum sensing, [Formula: see text] centers in our h10B15N samples exhibit a factor of 4 (2) enhancement in DC (AC) magnetic field sensitivity. For additional quantum resources, the individual addressability of the [Formula: see text] hyperfine levels enables the dynamical polarization and coherent control of the three nearest-neighbor 15N nuclear spins. Our results demonstrate the power of isotope engineering for enhancing the properties of quantum spin defects in hBN, and can be readily extended to improving spin qubits in a broad family of van der Waals materials.

6.
Adv Mater ; 36(2): e2306033, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705372

ABSTRACT

The unique physical, mechanical, chemical, optical, and electronic properties of hexagonal boron nitride (hBN) make it a promising 2D material for electronic, optoelectronic, nanophotonic, and quantum devices. Here, the changes in hBN's properties induced by isotopic purification in both boron and nitrogen are reported. Previous studies on isotopically pure hBN have focused on purifying the boron isotope concentration in hBN from its natural concentration (≈20 at% 10 B, 80 at% 11 B) while using naturally abundant nitrogen (99.6 at% 14 N, 0.4 at% 15 N), that is, almost pure 14 N. In this study, the class of isotopically purified hBN crystals to 15 N is extended. Crystals in the four configurations, namely h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N, are grown by the metal flux method using boron and nitrogen single isotope (> 99%) enriched sources, with nickel plus chromium as the solvent. In-depth Raman and photoluminescence spectroscopies demonstrate the high quality of the monoisotopic hBN crystals with vibrational and optical properties of the 15 N-purified crystals at the state-of-the-art of currently available 14 N-purified hBN. The growth of high-quality h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N opens exciting perspectives for thermal conductivity control in heat management, as well as for advanced functionalities in quantum technologies.

7.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992676

ABSTRACT

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

8.
Nat Commun ; 14(1): 7965, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042825

ABSTRACT

Hyperbolic phonon polaritons (HPhPs) can be supported in materials where the real parts of their permittivities along different directions are opposite in sign. HPhPs offer confinements of long-wavelength light to deeply subdiffractional scales, while the evanescent field allows for interactions with substrates, enabling the tuning of HPhPs by altering the underlying materials. Yet, conventionally used noble metal and dielectric substrates restrict the tunability of this approach. To overcome this challenge, here we show that doped semiconductor substrates, e.g., InAs and CdO, enable a significant tuning effect and dynamic modulations. We elucidated HPhP tuning with the InAs plasma frequency in the near-field, with a maximum difference of 8.3 times. Moreover, the system can be dynamically modulated by photo-injecting carriers into the InAs substrate, leading to a wavevector change of ~20%. Overall, the demonstrated hBN/doped semiconductor platform offers significant improvements towards manipulating HPhPs, and potential for engineered and modulated polaritonic systems.

9.
Nat Commun ; 14(1): 5331, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658077

ABSTRACT

The ideal mechanical properties and behaviors of materials without the influence of defects are of great fundamental and engineering significance but considered inaccessible. Here, we use single-atom-thin isotopically pure hexagonal boron nitride (hBN) to demonstrate that two-dimensional (2D) materials offer us close-to ideal experimental platforms to study intrinsic mechanical phenomena. The highly delicate isotope effect on the mechanical properties of monolayer hBN is directly measured by indentation: lighter 10B gives rise to higher elasticity and strength than heavier 11B. This anomalous isotope effect establishes that the intrinsic mechanical properties without the effect of defects could be measured, and the so-called ultrafine and normally neglected isotopic perturbation in nuclear charge distribution sometimes plays a more critical role than the isotopic mass effect in the mechanical and other physical properties of materials.

10.
Nanotechnology ; 34(47)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37607531

ABSTRACT

In this work, we report on the growth of hexagonal boron nitride (hBN) crystals from an iron flux at atmospheric pressure and high temperature and demonstrate that (i) the entire sheet of hBN crystals can be detached from the metal in a single step using hydrochloric acid and that (ii) these hBN crystals allow to fabricate high carrier mobility graphene-hBN devices. By combining spatially-resolved confocal Raman spectroscopy and electrical transport measurements, we confirm the excellent quality of these crystals for high-performance hBN-graphene-based van der Waals heterostructures. The full width at half maximum of the graphene Raman 2D peak is as low as 16 cm-1, and the room temperature charge carrier mobilitiy is around 80 000 cm2/(Vs) at a carrier density 1 × 1012cm-12. This is fully comparable with devices of similar dimensions fabricated using crystalline hBN synthesized by the high pressure and high temperature method. Finally, we show that for exfoliated high-quality hBN flakes with a thickness between 20 and 40 nm the line width of the hBN Raman peak, in contrast to the graphene 2D line width, is not useful for benchmarking hBN in high mobility graphene devices.

11.
Adv Mater ; 35(36): e2303198, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37400106

ABSTRACT

Different from hexagonal boron nitride (hBN) sheets, the bandgap of hBN nanoribbons (BNNRs) can be changed by spatial/electrostatic confinement. It is predicted that a transverse electric field can narrow the bandgap and even cause an insulator-metal transition in BNNRs. However, experimentally introducing an overhigh electric field across the BNNR remains challenging. Here, it is theoretically and experimentally demonstrated that water adsorption greatly reduces the bandgap of zigzag-oriented BNNRs (zBNNRs). Ab initio calculations show that water molecules can be favorably assembled within the trench between two adjacent BNNRs to form a polar ice layer, which induces a transverse equivalent electric field of over 2 V nm-1 accounting for the bandgap reduction. Field-effect transistors are successfully fabricated from zBNNRs with different widths. The conductance of water-adsorbed zBNNRs can be tuned over 3 orders in magnitude via modulation of the equivalent electrical field at room temperature. Furthermore, photocurrent response measurements are taken to determine the optical bandgaps of zBNNRs with water adsorption. The zBNNR with increased width can exhibit a bandgap down to 1.17 eV. This study offers fundamental insights into new routes toward realizing electronic/optoelectronic devices and circuits based on hexagonal boron nitride.

12.
ACS Nano ; 17(8): 7377-7383, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37010352

ABSTRACT

Photonic crystals and metamaterials are two overarching paradigms for manipulating light. By combining these approaches, hypercrystals can be created, which are hyperbolic dispersion metamaterials that undergo periodic modulation and mix photonic-crystal-like aspects with hyperbolic dispersion physics. Despite several attempts, there has been limited experimental realization of hypercrystals due to technical and design constraints. In this work, hypercrystals with nanoscale lattice constants ranging from 25 to 160 nm were created. The Bloch modes of these crystals were then measured directly using scattering near-field microscopy. The dispersion of the Bloch modes was extracted from the frequency dependence of the Bloch modes, revealing a clear switch from positive to negative group velocity. Furthermore, spectral features specific to hypercrystals were observed in the form of sharp density of states peaks, which are a result of intermodal coupling and should not appear in ordinary polaritonic crystals with an equivalent geometry. These findings are in agreement with theoretical predictions that even simple lattices can exhibit a rich hypercrystal bandstructure. This work is of both fundamental and practical interest, providing insight into nanoscale light-matter interactions and the potential to manipulate the optical density of states.

13.
Nano Lett ; 23(9): 3985-3993, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37116103

ABSTRACT

Strong coupling (SC) between light and matter excitations bears intriguing potential for manipulating material properties. Typically, SC has been achieved between mid-infrared (mid-IR) light and molecular vibrations or between visible light and excitons. However, simultaneously achieving SC in both frequency bands remains unexplored. Here, we introduce polaritonic nanoresonators (formed by h-BN layers on Al ribbons) hosting surface plasmon polaritons (SPPs) at visible frequencies and phonon polaritons (PhPs) at mid-IR frequencies, which simultaneously couple to excitons and molecular vibrations in an adjacent layer of CoPc molecules, respectively. Employing near-field optical nanoscopy, we demonstrate the colocalization of near fields at both visible and mid-IR frequencies. Far-field transmission spectroscopy of the nanoresonator structure covered with a layer of CoPc molecules shows clear mode splittings in both frequency ranges, revealing simultaneous SPP-exciton and PhP-vibron coupling. Dual-band SC may offer potential for manipulating coupling between exciton and molecular vibration in future optoelectronics, nanophotonics, and quantum information applications.

14.
Adv Mater ; 35(20): e2209909, 2023 May.
Article in English | MEDLINE | ID: mdl-36843308

ABSTRACT

Wavelength-selective absorbers (WS-absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography-free fabrication of WS-absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality-factors (Q-factors) and/or multiband TPP-absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q-factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q-factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow-band and nondispersive WS-absorbers are needed. Moreover, an open-source algorithm is developed to inversely design THP-absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP-absorbers can realize same spectral resonances with fewer DBR layers than a TPP-absorber, thus reducing the fabrication complexity and enabling more cost-effective, lithography-free, wafer-scale WS-absorberss for applications such as free-space communications and gas sensing.

15.
Nat Commun ; 13(1): 6850, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369225

ABSTRACT

Phonon polariton (PhP) nanoresonators can dramatically enhance the coupling of molecular vibrations and infrared light, enabling ultrasensitive spectroscopies and strong coupling with minute amounts of matter. So far, this coupling and the resulting localized hybrid polariton modes have been studied only by far-field spectroscopy, preventing access to modal near-field patterns and dark modes, which could further our fundamental understanding of nanoscale vibrational strong coupling (VSC). Here we use infrared near-field spectroscopy to study the coupling between the localized modes of PhP nanoresonators made of h-BN and molecular vibrations. For a most direct probing of the resonator-molecule coupling, we avoid the direct near-field interaction between tip and molecules by probing the molecule-free part of partially molecule-covered nanoresonators, which we refer to as remote near-field probing. We obtain spatially and spectrally resolved maps of the hybrid polariton modes, as well as the corresponding coupling strengths, demonstrating VSC on a single PhP nanoresonator level. Our work paves the way for near-field spectroscopy of VSC phenomena not accessible by conventional techniques.

16.
ACS Nano ; 16(11): 18695-18707, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36257051

ABSTRACT

Interlayer excitons, or bound electron-hole pairs whose constituent quasiparticles are located in distinct stacked semiconducting layers, are being intensively studied in heterobilayers of two-dimensional semiconductors. They owe their existence to an intrinsic type-II band alignment between both layers that convert these into p-n junctions. Here, we unveil a pronounced interlayer exciton (IX) in heterobilayers of metal monochalcogenides, namely, γ-InSe on ε-GaSe, whose pronounced emission is adjustable just by varying their thicknesses given their number of layers dependent direct band gaps. Time-dependent photoluminescense spectroscopy unveils considerably longer interlayer exciton lifetimes with respect to intralayer ones, thus confirming their nature. The linear Stark effect yields a bound electron-hole pair whose separation d is just (3.6 ± 0.1) Å with d being very close to dSe = 3.4 Å which is the calculated interfacial Se separation. The envelope of IX is twist-angle-dependent and describable by superimposed emissions that are nearly equally spaced in energy, as if quantized due to localization induced by the small moiré periodicity. These heterostacks are characterized by extremely flat interfacial valence bands making them prime candidates for the observation of magnetism or other correlated electronic phases upon carrier doping.

17.
Nat Commun ; 13(1): 4511, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922424

ABSTRACT

Polaritons enable subwavelength confinement and highly anisotropic flows of light over a wide spectral range, holding the promise for applications in modern nanophotonic and optoelectronic devices. However, to fully realize their practical application potential, facile methods enabling nanoscale active control of polaritons are needed. Here, we introduce a hybrid polaritonic-oxide heterostructure platform consisting of van der Waals crystals, such as hexagonal boron nitride (hBN) or alpha-phase molybdenum trioxide (α-MoO3), transferred on nanoscale oxygen vacancy patterns on the surface of prototypical correlated perovskite oxide, samarium nickel oxide, SmNiO3 (SNO). Using a combination of scanning probe microscopy and infrared nanoimaging techniques, we demonstrate nanoscale reconfigurability of complex hyperbolic phonon polaritons patterned at the nanoscale with high resolution. Hydrogenation and temperature modulation allow spatially localized conductivity modulation of SNO nanoscale patterns, enabling robust real-time modulation and nanoscale reconfiguration of hyperbolic polaritons. Our work paves the way towards nanoscale programmable metasurface engineering for reconfigurable nanophotonic applications.

18.
Sci Adv ; 8(29): eabp8486, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35857836

ABSTRACT

Negative reflection occurs when light is reflected toward the same side of the normal to the boundary from which it is incident. This exotic optical phenomenon is not only yet to be visualized in real space but also remains unexplored, both at the nanoscale and in natural media. Here, we directly visualize nanoscale-confined polaritons negatively reflecting on subwavelength mirrors fabricated in a low-loss van der Waals crystal. Our near-field nanoimaging results unveil an unconventional and broad tunability of both the polaritonic wavelength and direction of propagation upon negative reflection. On the basis of these findings, we introduce a device in nano-optics: a hyperbolic nanoresonator, in which hyperbolic polaritons with different momenta reflect back to a common point source, enhancing the intensity. These results pave way to realize nanophotonics in low-loss natural media, providing an efficient route to control nanolight, a key for future on-chip optical nanotechnologies.

19.
Nat Mater ; 21(9): 1029-1034, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35710631

ABSTRACT

Spin-orbit torque (SOT)-driven deterministic control of the magnetic state of a ferromagnet with perpendicular magnetic anisotropy is key to next-generation spintronic applications including non-volatile, ultrafast and energy-efficient data-storage devices. However, field-free deterministic switching of perpendicular magnetization remains a challenge because it requires an out-of-plane antidamping torque, which is not allowed in conventional spin-source materials such as heavy metals and topological insulators due to the system's symmetry. The exploitation of low-crystal symmetries in emergent quantum materials offers a unique approach to achieve SOTs with unconventional forms. Here we report an experimental realization of field-free deterministic magnetic switching of a perpendicularly polarized van der Waals magnet employing an out-of-plane antidamping SOT generated in layered WTe2, a quantum material with a low-symmetry crystal structure. Our numerical simulations suggest that the out-of-plane antidamping torque in WTe2 is essential to explain the observed magnetization switching.

20.
ACS Nano ; 16(2): 2756-2761, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35099926

ABSTRACT

The presence of metastable Bernal stacking boron nitride is verified by combining second harmonic generation (SHG) and photoluminescence (PL) spectroscopy. The scanning confocal cryomicroscope, operating in the deep-ultraviolet range, shows a one-to-one correlation between inversion symmetry breaking probed by SHG and the detection of an intense PL line at ∼6.035 eV, the specific signature of the noncentrosymmetric Bernal stacking. The coherent character of the Bernal phase in boron nitride crystals is demonstrated by two-photon excitation spectroscopy. Direct and indirect excitons are simultaneously detected in the emission spectrum; they are quasi-degenerate, in agreement with theoretical predictions for Bernal boron nitride. The transition from AA' to AB stacking is characterized by an intense emission from stacking faults at the grain boundaries of hexagonal and Bernal boron nitride crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...