Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
R Soc Open Sci ; 8(8): 210309, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34457339

ABSTRACT

We consider genotypic convergence of populations and show that under fixed fitness asexual and haploid sexual populations attain monomorphic convergence (even under genetic linkage between loci) to basins of attraction with locally exponential convergence rates; the same convergence obtains in single locus diploid sexual reproduction but to polymorphic populations. Furthermore, we show that there is a unified theory underlying these convergences: all of them can be interpreted as instantiations of players in a potential game implementing a multiplicative weights updating algorithm to converge to equilibrium, making use of the Baum-Eagon Theorem. To analyse varying environments, we introduce the concept of 'virtual convergence', under which, even if fixation is not attained, the population nevertheless achieves the fitness growth rate it would have had under convergence to an optimal genotype. Virtual convergence is attained by asexual, haploid sexual and multi-locus diploid reproducing populations, even if environments vary arbitrarily. We also study conditions for true monomorphic convergence in asexually reproducing populations in varying environments.

2.
J Theor Biol ; 426: 67-81, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28522360

ABSTRACT

The question of 'why sex' has long been a puzzle. The randomness of recombination, which potentially produces low fitness progeny, contradicts notions of fitness landscape hill climbing. We use the concept of evolution as an algorithm for learning unpredictable environments to provide a possible answer. While sex and asex both implement similar machine learning no-regret algorithms in the context of random samples that are small relative to a vast genotype space, the algorithm of sex constitutes a more efficient goal-directed walk through this space. Simulations indicate this gives sex an evolutionary advantage, even in stable, unchanging environments. Asexual populations rapidly reach a fitness plateau, but the learning aspect of the no-regret algorithm most often eventually boosts the fitness of sexual populations past the maximal viability of corresponding asexual populations. In this light, the randomness of sexual recombination is not a hindrance but a crucial component of the 'sampling for learning' algorithm of sexual reproduction.


Subject(s)
Biological Evolution , Reproduction/physiology , Sexual Behavior/psychology , Algorithms , Animals , Humans , Sexual Behavior, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL