Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Phys Rev Lett ; 132(17): 176701, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38728732

ABSTRACT

Altermagnetism is a recently identified magnetic symmetry class combining characteristics of conventional collinear ferromagnets and antiferromagnets, that were regarded as mutually exclusive, and enabling phenomena and functionalities unparalleled in either of the two traditional elementary magnetic classes. In this work we use symmetry, ab initio theory, and experiments to explore x-ray magnetic circular dichroism (XMCD) in the altermagnetic class. As a representative material for our XMCD study we choose α-MnTe with compensated antiparallel magnetic order in which an anomalous Hall effect has been already demonstrated. We predict and experimentally confirm a characteristic XMCD line shape for compensated moments lying in a plane perpendicular to the light propagation vector. Our results highlight the distinct phenomenology in altermagnets of this time-reversal symmetry breaking response, and its potential utility for element-specific spectroscopy and microscopy.

2.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38446000

ABSTRACT

The design, manufacture, and characterization of an inexpensive, temperature-controlled vacuum chamber with millikelvin stability for electrical transport measurements at and near room temperature is reported. A commercially available Peltier device and a high-precision temperature controller are used to actively heat and cool the sample space. The system was designed to minimize thermal fluctuations in spintronic and semiconductor transport measurements, but the general principle is relevant to a wide range of electrical measurement applications. The main issues overcome are the mounting of a sample with a path of high thermal conductivity through to the Peltier device and the heat sinking of the said Peltier device inside a vacuum. A copper slug is used as the mount for a sample, and a large copper block is used as a thermal feedthrough before a passive heat sink is used to cool this block. The Peltier device provides 20 W of heating and cooling power, achieving a maximum range of 30 K below and 40 K above the ambient temperature. The temperature stability is within 5 mK at all set points with an even better performance above the ambient temperature. A vacuum pressure of 10-8 hPa is achievable. As a demonstration, we present experimental results from current-induced electrical switching of a CuMnAs thin film. Transport measurements with and without the Peltier control emphasize the importance of a constant temperature in these applications. The thermal lag between the sample space measurement and the sample itself is observed through magnetoresistance values measured during a temperature sweep.

3.
Nat Nanotechnol ; 18(8): 849-853, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37157021

ABSTRACT

Topologically protected magnetic textures are promising candidates for information carriers in future memory devices, as they can be efficiently propelled at very high velocities using current-induced spin torques. These textures-nanoscale whirls in the magnetic order-include skyrmions, half-skyrmions (merons) and their antiparticles. Antiferromagnets have been shown to host versions of these textures that have high potential for terahertz dynamics, deflection-free motion and improved size scaling due to the absence of stray field. Here we show that topological spin textures, merons and antimerons, can be generated at room temperature and reversibly moved using electrical pulses in thin-film CuMnAs, a semimetallic antiferromagnet that is a testbed system for spintronic applications. The merons and antimerons are localized on 180° domain walls, and move in the direction of the current pulses. The electrical generation and manipulation of antiferromagnetic merons is a crucial step towards realizing the full potential of antiferromagnetic thin films as active components in high-density, high-speed magnetic memory devices.

4.
Sci Rep ; 11(1): 2300, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33504875

ABSTRACT

We present detailed experimental measurements and simulations of the field-dependent magnetization and magnetoresistance in the vicinity of the Curie temperature in the highly disordered dilute ferromagnetic semiconductor (Ga,Mn)As. The observed dependence of the magnetization on external magnetic field and temperature is consistent with three-dimensional Heisenberg equation of state calculations including a narrow distribution of critical temperatures. The magnetoresistance shows a peak at the Curie temperature due to the suppression of magnetic scattering in an applied magnetic field, which is well-described by considering changes in the square of the magnetization induced by the magnetic field.

5.
Sci Rep ; 9(1): 3156, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30816265

ABSTRACT

The use of voltages to control magnetisation via the inverse magnetostriction effect in piezoelectric/ferromagnet heterostructures holds promise for ultra-low energy information storage technologies. Epitaxial galfenol, an alloy of iron and gallium, has been shown to be a highly suitable material for such devices because it possesses biaxial anisotropy and large magnetostriction. Here we experimentally investigate the properties of galfenol/spacer/galfenol structures in which the compositions of the galfenol layers are varied in order to produce different strengths of the magnetic anisotropy and magnetostriction constants. Based upon these layers, we propose and simulate the operation of an information storage device that can operate as an energy efficient multilevel memory cell.

6.
Sci Rep ; 7(1): 11147, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894219

ABSTRACT

Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5 nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. This is a key parameter for enabling the understanding of domain structures in CuMnAs imaged using x-ray magnetic linear dichroism microscopy techniques.

7.
Expert Opin Drug Saf ; 16(12): 1413-1426, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28920492

ABSTRACT

INTRODUCTION: There are several second-line treatment options for patients with renal cell carcinoma after first-line failure of a tyrosine kinase inhibitor, especially with the recent approvals of cabozantinib, nivolumab, and the lenvatinib plus everolimus combination. A lack of reliable biomarkers and an overall lack of prospective head-to-head comparisons make it a challenge to choose a second-line treatment in the clinic. Areas covered: In this review/meta-opinion, we describe the safety profile of the lenvatinib plus everolimus combination in renal cell carcinoma. The combination of lenvatinib plus everolimus has achieved the highest rates of objective responses and the longest progression free and overall survival in cross-comparison trials. At the same time, the safety profile of this combination, including the rate of total and severe adverse events, the percentage of dose reductions required, and the rate of treatment discontinuation, was less favorable compared with available monotherapy options, suggesting that better management could help to maximize the activity of this combination while protecting patients from undue harm. Expert opinion: Herein, we aim to postulate multidisciplinary recommendations on the advice to offer to patients and caregivers before starting treatment and how to manage the combination from the perspective of daily clinical practice.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Renal Cell/pathology , Disease-Free Survival , Dose-Response Relationship, Drug , Everolimus/administration & dosage , Humans , Kidney Neoplasms/pathology , Phenylurea Compounds/administration & dosage , Quinolines/administration & dosage , Survival Rate
8.
Sci Rep ; 7(1): 7613, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28790365

ABSTRACT

Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat dissipating spin polarized currents to manipulate magnetic domain walls has limited the development of such technologies. The possibility of controlling magnetic domain walls using voltages offers an energy efficient route to overcome these limitations. Here we show that a voltage-induced uniaxial strain induces reversible deterministic switching of the chirality of a magnetic vortex wall. We discuss how this functionality will be applicable to schemes for information storage and logical processing, making a significant step towards the practical implementation of magnetic domain walls in energy efficient computing.

9.
Orthod Craniofac Res ; 20 Suppl 1: 83-88, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28643933

ABSTRACT

OBJECTIVES: To examine the effect of zoledronic acid (ZOL) on cortical bone modelling and healing of extraction sockets in the jaw bones of a rodent model. We hypothesized ZOL suppresses both the bone formation in the modelling mode in the jaw bones and alters the extraction site healing. MATERIAL & METHODS: Rice rats were administered saline solution and two dose regimens of ZOL: 0.1 mg/kg, twice a week, for 4 weeks (n=17, saline=8 & ZOL=9) and a higher dose of 0.4 mg/kg, weekly, for 9 weeks (n=30, saline=15 & ZOL=15). Two pairs of fluorochrome bone labels were administered. Extraction of maxillary teeth was performed in maxilla. Mineral apposition rate, mineralizing surface and bone formation rate (BFR) were quantified on periodontal (PDL), alveolar and basal bone surfaces, and in the trabecular bone of proximal tibia. Bone volume (BV) was evaluated at extraction sockets. Multivariate Gaussian models were used to account for repeated measurements, and analyzes were conducted in SAS V9.3. RESULTS: ZOL suppressed bone modelling (BFR/BS) at the PDL surfaces in the mandible (P<.05), but its effect was not significant at the periosteal surfaces of both jaws. BV for the healing sockets of ZOL treated animals was not significantly different (P=.07) compared to the saline group. ZOL suppressive effect was higher in the tibia compared to the jaws. CONCLUSION: ZOL severely suppresses coupled remodelling in the tibia, and the suppression of bone formation in the modelling mode in the jaws demonstrates the site specific effects of ZOL in rice rats.


Subject(s)
Diphosphonates/pharmacology , Imidazoles/pharmacology , Osteogenesis/drug effects , Animals , Bone Density/drug effects , Diphosphonates/administration & dosage , Imidazoles/administration & dosage , Mandible/drug effects , Maxilla/drug effects , Rats , Sigmodontinae , Tibia/drug effects , Tooth Extraction , Zoledronic Acid
10.
Nat Commun ; 8: 15434, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28524862

ABSTRACT

Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.

11.
Phys Rev Lett ; 118(5): 057701, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28211721

ABSTRACT

The magnetic order in antiferromagnetic materials is hard to control with external magnetic fields. Using x-ray magnetic linear dichroism microscopy, we show that staggered effective fields generated by electrical current can induce modification of the antiferromagnetic domain structure in microdevices fabricated from a tetragonal CuMnAs thin film. A clear correlation between the average domain orientation and the anisotropy of the electrical resistance is demonstrated, with both showing reproducible switching in response to orthogonally applied current pulses. However, the behavior is inhomogeneous at the submicron level, highlighting the complex nature of the switching process in multidomain antiferromagnetic films.

12.
Sci Rep ; 7: 42107, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186114

ABSTRACT

We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

13.
Sci Rep ; 6: 28458, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27329068

ABSTRACT

The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

14.
Science ; 351(6273): 587-90, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26841431

ABSTRACT

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 10(6) ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

15.
Sci Rep ; 5: 17079, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26602978

ABSTRACT

Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.

16.
Anaesthesia ; 68(8): 878, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24044455
17.
Nat Commun ; 4: 2322, 2013.
Article in English | MEDLINE | ID: mdl-23959149

ABSTRACT

Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

18.
Sci Rep ; 3: 2220, 2013.
Article in English | MEDLINE | ID: mdl-23860685

ABSTRACT

Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

19.
Radiat Prot Dosimetry ; 156(4): 445-50, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23604741

ABSTRACT

The largest man-made contributor to the ionising radiation dose to the Australian population is from diagnostic imaging and nuclear medicine. The last estimation of this dose was made in 2004 (1.3 mSv), this paper describes a recent re-evaluation of this dose to reflect the changes in imaging trends and technology. The estimation was calculated by summing the dose from five modalities, computed tomography (CT), general radiography/fluoroscopy, interventional procedures, mammography and nuclear medicine. Estimates were made using Australian frequency data and dose data from a range of Australian and international sources of average effective dose values. The ionising radiation dose to the Australian population in 2010 from diagnostic imaging and nuclear medicine is estimated to be 1.7 mSv (1.11 mSv CT, 0.30 mSv general radiography/fluoroscopy, 0.17 mSv interventional procedures, 0.03 mSv mammography and 0.10 mSv nuclear medicine). This exceeds the estimate of 1.5 mSv per person from natural background and cosmic radiation.


Subject(s)
Diagnostic Imaging/adverse effects , Nuclear Medicine/standards , Australia , Fluoroscopy/adverse effects , Humans , Mammography/adverse effects , Radiation Dosage , Radiation Monitoring , Radiation Protection/methods , Radiation, Ionizing , Radiography, Interventional/adverse effects , Radiometry/methods , Tomography, X-Ray Computed/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL