Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pain Headache Rep ; 26(12): 877-882, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36454429

ABSTRACT

Spinal cord stimulator (SCS) is approved to treat various pain conditions and is commonly seen in the chronic pain patient population. Due to the nature of the device and its location, infections associated with SCS have a particularly high morbidity. According to post-market data and medical device reports, 87% of patients receiving SCS implants were given perioperative antibiotics as the implantable neurostimulator or receiver pocket serve as the most common sites of infection. The most common antibiotics for surgical prophylaxis given are first-generation cephalosporins (cefalexin, cefazolin) at the time of implantation. If deep infection is suspected, imaging in the form of CT scan should be obtained as physical exam is not always sufficient. For infections involving the epidural space, vertebra, or intervertebral discs, MRI is the preferred imaging modality. If meningitis is suspected, a lumbar puncture is recommended. Positive cultures can help guide antibiotic therapy.


Subject(s)
Chronic Pain , Spinal Cord Stimulation , Humans , Spinal Cord Stimulation/methods , Chronic Pain/therapy , Spine , Anti-Bacterial Agents/therapeutic use , Spinal Cord , Retrospective Studies
2.
J Glob Health ; 10(2): 020425, 2020 12.
Article in English | MEDLINE | ID: mdl-33274064

ABSTRACT

BACKGROUND: Oxygen reduces mortality from severe pneumonia and is a vital part of case management, but achieving reliable access to oxygen is challenging in low and middle-income country (LMIC) settings. We developed and field tested two oxygen supply solutions suitable for the realities of LMIC health facilities. METHODS: A Health Needs Assessment identified a technology gap preventing reliable oxygen supplies in Gambian hospitals. We used simultaneous engineering to develop two solutions: a Mains-Power Storage (Mains-PS) system consisting of an oxygen concentrator and batteries connected to mains power, and a Solar-Power Storage (Solar-PS) system (with batteries charged by photovoltaic panels) and evaluated them in health facilities in The Gambia and Fiji to assess reliability, usability and costs. RESULTS: The Mains-PS system delivered the specified ≥85% (±3%) oxygen concentration in 100% of 1-2 weekly measurements over 12 months, which was available to 100% of hypoxaemic patients, and 100% of users rated ease-of-use as at least 'good' (90% very good or excellent). The Solar-PS system delivered ≥85% ± 3%) oxygen concentration in 100% of 1-2 weekly measurements, was available to 100% of patients needing oxygen, and 100% of users rated ease-of-use at least very good.Costs for the systems (in US dollars) were: PS$9519, Solar-PS standard version $20 718. The of oxygen for a standardised 30-bed health facility using 1.7 million litres of oxygen per year was: for cylinders 3.2 cents (c)/L in The Gambia and 6.8 c/L in Fiji, for the PS system 1.2 c/L in both countries, and for the Solar-PS system 1.5 c/L in both countries. CONCLUSIONS: The oxygen systems developed and tested delivered high-quality, reliable, cost-efficient oxygen in LMIC contexts, and were easy to operate. Reliable oxygen supplies are achievable in LMIC health facilities like those in The Gambia and Fiji.


Subject(s)
Developing Countries , Oxygen/supply & distribution , Pneumonia/therapy , Electric Power Supplies , Fiji , Gambia , Health Facilities , Humans , Oxygen/therapeutic use , Reproducibility of Results , Solar Energy
SELECTION OF CITATIONS
SEARCH DETAIL
...