Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Pediatr Res ; 92(1): 299-306, 2022 07.
Article in English | MEDLINE | ID: mdl-33654289

ABSTRACT

BACKGROUND: Noninvasive advanced neuroimaging and neurochemical assessment can identify subtle abnormalities and predict neurodevelopmental impairments. Our objective was to quantify white matter metabolite levels and evaluate their relationship with neurodevelopmental outcomes at age 3 years. METHODS: Our study evaluated a longitudinal prospective cohort of very premature infants (<32 weeks gestational age) with single-voxel proton magnetic resonance spectroscopy from the centrum semiovale performed at term-equivalent age and standardized cognitive, verbal, and motor assessments at 3 years corrected age. We separately examined metabolite ratios in the left and right centrum semiovale. We also conducted an exploratory interaction analysis for high/low socioeconomic status (SES) to evaluate the relationship between metabolites and neurodevelopmental outcomes, after adjusting for confounders. RESULTS: We found significant relationships between choline/creatine levels in the left and right centrum semiovale and motor development scores. Exploratory interaction analyses revealed that, for infants with low SES, there was a negative association between choline/creatine in the left centrum semiovale and motor assessment scores at age 3 years. CONCLUSIONS: Brain metabolites from the centrum semiovale at term-equivalent age were associated with motor outcomes for very preterm infants at 3 years corrected age. This effect may be most pronounced for infants with low SES. IMPACT: Motor development at 3 years corrected age for very preterm infants is inversely associated with choline neurochemistry within the centrum semiovale on magnetic resonance spectroscopy at term-equivalent age, especially in infants with low socioeconomic status. No prior studies have studied metabolites in the centrum semiovale to predict neurodevelopmental outcomes at 3 years corrected age based on high/low socioeconomic status. For very preterm infants with lower socioeconomic status, higher choline-to-creatine ratio in central white matter is associated with worse neurodevelopmental outcomes.


Subject(s)
Creatine , Infant, Premature, Diseases , Brain , Child, Preschool , Choline , Creatine/metabolism , Female , Fetal Growth Retardation/metabolism , Humans , Infant , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/pathology , Magnetic Resonance Spectroscopy , Prospective Studies
2.
Radiat Res ; 197(2): 101-112, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34673986

ABSTRACT

131I-metaiodobenzylguanidine (131I-mIBG) is a targeted radiation therapy developed for the treatment of advanced neuroblastoma. We have previously shown that this patient cohort can be used to predict absorbed dose associated with early 131I exposure, 72 h after treatment. We now expand these studies to identify gene expression differences associated with 131I-mIBG exposure 15 days after treatment. Total RNA from peripheral blood lymphocytes was isolated from 288 whole blood samples representing 59 relapsed or refractory neuroblastoma patients before and after 131I-mIBG treatment. We found that several transcripts predictive of early exposure returned to baseline levels by day 15, however, selected transcripts did not return to baseline. At 72 h, all 17 selected pathway-specific transcripts were differentially expressed. Transcripts CDKN1A (P < 0.000001), FDXR (P < 0.000001), DDB2 (P < 0.000001), and BBC3 (P < 0.000001) showed the highest up-regulation at 72 h after 131I-mIBG exposure, with mean log2 fold changes of 2.55, 2.93, 1.86 and 1.85, respectively. At day 15 after 131I-mIBG, 11 of the 17 selected transcripts were differentially expressed, with XPC, STAT5B, PRKDC, MDM2, POLH, IGF1R, and SGK1 displaying significant up-regulation at 72 h and significant down-regulation at day 15. Interestingly, transcripts FDXR (P = 0.01), DDB2 (P = 0.03), BCL2 (P = 0.003), and SESN1 (P < 0.0003) maintained differential expression 15 days after 131I-mIBG treatment. These results suggest that transcript levels for DNA repair, apoptosis, and ionizing radiation-induced cellular stress are still changing by 15 days after 131I-mIBG treatment. Our studies showcase the use of biodosimetry gene expression panels as predictive biomarkers following early (72 h) and late (15 days) internal 131I exposure. Our findings also demonstrate the utility of our transcript panel to differentiate exposed from non-exposed individuals up to 15 days after exposure from internal 131I.


Subject(s)
3-Iodobenzylguanidine
3.
Neuroimage ; 241: 118430, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34314848

ABSTRACT

PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Data Analysis , Databases, Factual/standards , Magnetic Resonance Imaging/standards , Magnetic Resonance Spectroscopy/standards , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods
4.
J Neurodev Disord ; 13(1): 5, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407072

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is associated with hyper- and/or hypo-sensitivity to sensory input. Spontaneous alpha power, which plays an important role in shaping responsivity to sensory information, is reduced across the lifespan in individuals with ASD. Furthermore, an excitatory/inhibitory imbalance has also been linked to sensory dysfunction in ASD and has been hypothesized to underlie atypical patterns of spontaneous brain activity. The present study examined whether resting-state alpha power differed in children with ASD as compared to TD children, and investigated the relationships between alpha levels, concentrations of excitatory and inhibitory neurotransmitters, and atypical sensory processing in ASD. METHODS: Participants included thirty-one children and adolescents with ASD and thirty-one age- and IQ-matched typically developing (TD) participants. Resting-state electroencephalography (EEG) was used to obtain measures of alpha power. A subset of participants (ASD = 16; TD = 16) also completed a magnetic resonance spectroscopy (MRS) protocol in order to measure concentrations of excitatory (glutamate + glutamine; Glx) and inhibitory (GABA) neurotransmitters. RESULTS: Children with ASD evidenced significantly decreased resting alpha power compared to their TD peers. MRS estimates of GABA and Glx did not differ between groups with the exception of Glx in the temporal-parietal junction. Inter-individual differences in alpha power within the ASD group were not associated with region-specific concentrations of GABA or Glx, nor were they associated with sensory processing differences. However, atypically decreased Glx was associated with increased sensory impairment in children with ASD. CONCLUSIONS: Although we replicated prior reports of decreased alpha power in ASD, atypically reduced alpha was not related to neurochemical differences or sensory symptoms in ASD. Instead, reduced Glx in the temporal-parietal cortex was associated with greater hyper-sensitivity in ASD. Together, these findings may provide insight into the neural underpinnings of sensory processing differences present in ASD.


Subject(s)
Autism Spectrum Disorder , Adolescent , Autism Spectrum Disorder/diagnostic imaging , Child , Electroencephalography , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Perception
5.
Arch Toxicol ; 94(10): 3409-3420, 2020 10.
Article in English | MEDLINE | ID: mdl-32875357

ABSTRACT

Manganese (Mn) is a neurotoxicant that, due to its paramagnetic property, also functions as a magnetic resonance imaging (MRI) T1 contrast agent. Previous studies in Mn toxicity have shown that Mn accumulates in the brain, which may lead to parkinsonian symptoms. In this article, we trained support vector machines (SVM) using whole-brain R1 (R1 = 1/T1) maps from 57 welders and 32 controls to classify subjects based on their air Mn concentration ([Mn]Air), Mn brain accumulation (ExMnBrain), gross motor dysfunction (UPDRS), thalamic GABA concentration (GABAThal), and total years welding. R1 was highly predictive of [Mn]Air above a threshold of 0.20 mg/m3 with an accuracy of 88.8% and recall of 88.9%. R1 was also predictive of subjects with GABAThal having less than or equal to 2.6 mM with an accuracy of 82% and recall of 78.9%. Finally, we used an SVM to predict age as a method of verifying that the results could be attributed to Mn exposure. We found that R1 was predictive of age below 48 years of age with accuracies ranging between 75 and 82% with recall between 94.7% and 76.9% but was not predictive above 48 years of age. Together, this suggests that lower levels of exposure (< 0.20 mg/m3 and < 18 years of welding on the job) do not produce discernable signatures, whereas higher air exposures and subjects with more total years welding produce signatures in the brain that are readily identifiable using SVM.


Subject(s)
Air Pollutants, Occupational/toxicity , Brain/metabolism , Manganese Poisoning/metabolism , Manganese/toxicity , Occupational Exposure , Adult , Age Factors , Air Pollutants, Occupational/metabolism , Brain Chemistry , Humans , Magnetic Resonance Imaging , Male , Manganese/metabolism , Metal Workers , Middle Aged , Models, Biological , Movement Disorders/diagnosis , Movement Disorders/metabolism , Support Vector Machine , Thalamus/diagnostic imaging , Thalamus/metabolism , Welding , Young Adult , gamma-Aminobutyric Acid/analysis
6.
Radiology ; 295(1): 171-180, 2020 04.
Article in English | MEDLINE | ID: mdl-32043950

ABSTRACT

Background The hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4-5.0 Hz), signal-to-noise ratio (range, 174-289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Brain/metabolism , Commerce , Magnetic Resonance Spectroscopy/methods , Adult , Female , Humans , Male , Prospective Studies , Young Adult
7.
Autism Res ; 13(4): 550-562, 2020 04.
Article in English | MEDLINE | ID: mdl-31909886

ABSTRACT

Although diagnosed on the basis of deficits in social communication and interaction, autism spectrum disorder (ASD) is also characterized by superior performance on a variety of visuospatial tasks, including visual search. In neurotypical individuals, region-specific concentrations of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) are associated with individual differences in attention and perception. While it has been hypothesized that ASD may be associated with an excitatory-inhibitory imbalance, it remains unclear how this may contribute to accelerated visual search performance in individuals with ASD. To investigate this, 21 children with ASD and 20 typically developing children participated in a visual search task and a magnetic resonance spectroscopy study to detect neurochemical concentrations, including GABA. Region-specific neurochemicals were examined in the right frontal eye fields, right temporal-parietal junction (rTPJ), and bilateral visual cortex (VIS). GABA concentrations did not differ between groups; however, in children with ASD, greater GABA concentration in the VIS was related to more efficient search. Additionally, lower VIS GABA levels were also associated with increased social impairment. Finally, we found reduced N-acetyl aspartate, total creatine, glutamate and glutamine (Glx), GABA/Glx in the rTPJ, suggestive of neuronal dysfunction in a critical network hub. Our results show that GABA concentrations in the VIS are related to efficient search in ASD, thus providing further evidence of enhanced discrimination in ASD. Autism Res 2020, 13: 550-562. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Children with autism spectrum disorder (ASD) often perform better than their non-ASD peers on visual search tasks; however, it is unclear how they achieve this superior performance. Using magnetic resonance spectroscopy to measure neurochemicals in the brain, we found that the level of one, gamma-aminobutyric acid, in the visual cortex was directly related to search abilities in children with ASD. These results suggest that faster search may relate to enhanced perceptual functioning in children with ASD.


Subject(s)
Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Brain/metabolism , Brain/physiopathology , Magnetic Resonance Spectroscopy/methods , Visual Perception/physiology , Adolescent , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Attention , Child , Creatine/metabolism , Female , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Male , gamma-Aminobutyric Acid/metabolism
8.
Toxicol Sci ; 172(1): 181-190, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31388678

ABSTRACT

Manganese (Mn) is a neurotoxicant that many workers are exposed to daily. There is limited knowledge about how changes in exposure levels impact measures in magnetic resonance imaging (MRI). We hypothesized that changes in Mn exposure would be reflected by changes in the MRI relaxation rate R1 and thalamic γ-aminobutyric acid (GABAThal). As part of a prospective cohort study, 17 welders were recruited and imaged on 2 separate occasions approximately 2 years apart. MRI relaxometry was used to assess changes of Mn accumulation in the brain. Additionally, GABA was measured using magnetic resonance spectroscopy in the thalamic and striatal regions of the brain. Air Mn exposure ([Mn]Air) and cumulative exposure indexes of Mn (Mn-CEI) for the past 3 months (Mn-CEI3M), past year (Mn-CEI12M), and lifetime (Mn-CEILife) were calculated using personal air sampling and a comprehensive work history, whereas toenails were collected for analysis of internal Mn body burden. Finally, welders' motor function was examined using the Unified Parkinson's Disease Rating Scale (UPDRS). Median exposure decreased for all exposure measures between the first and second scan. ΔGABAThal was significantly correlated with ΔMn-CEI3M (ρ = 0.66, adjusted p = .02), ΔMn-CEI12M (ρ = 0.70, adjusted p = .006), and Δ[Mn]Air (ρ = 0.77, adjusted p = .002). ΔGABAThal significantly decreased linearly with ΔMn-CEI3M (quantile regression, ß = 15.22, p = .02) as well as Δ[Mn]Air (ß = 1.27, p = .04). Finally, Mn-CEILife interacted with Δ[Mn]Air in the substantia nigra where higher Mn-CEILife lessened the ΔR1 per Δ[Mn]Air (F-test, p = .005). Although R1 and GABA changed with Mn exposure, UPDRS was unaffected. In conclusion, our study shows that effects from changes in Mn exposure are reflected in thalamic GABA levels and brain Mn levels, as measured by R1, in most brain regions.

9.
Neuroimage ; 191: 537-548, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30840905

ABSTRACT

Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels.


Subject(s)
Brain/metabolism , Magnetic Resonance Spectroscopy/standards , gamma-Aminobutyric Acid/analysis , Adolescent , Adult , Datasets as Topic , Female , Humans , Magnetic Resonance Spectroscopy/methods , Male , Reference Values , Water , Young Adult
10.
Cells ; 8(2)2019 01 29.
Article in English | MEDLINE | ID: mdl-30699914

ABSTRACT

We took advantage of magnetic resonance imaging (MRI) and spectroscopy (MRS) as non-invasive methods to quantify brain iron and neurometabolites, which were analyzed along with other predictors of motor dysfunction in Parkinson's disease (PD). Tapping hits, tremor amplitude, and the scores derived from part III of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS3 scores) were determined in 35 male PD patients and 35 controls. The iron-sensitive MRI relaxation rate R2* was measured in the globus pallidus and substantia nigra. γ-aminobutyric acid (GABA)-edited and short echo-time MRS was used for the quantification of neurometabolites in the striatum and thalamus. Associations of R2*, neurometabolites, and other factors with motor function were estimated with Spearman correlations and mixed regression models to account for repeated measurements (hands, hemispheres). In PD patients, R2* and striatal GABA correlated with MDS-UPDRS3 scores if not adjusted for age. Patients with akinetic-rigid PD subtype (N = 19) presented with lower creatine and striatal glutamate and glutamine (Glx) but elevated thalamic GABA compared to controls or mixed PD subtype. In PD patients, Glx correlated with an impaired dexterity when adjusted for covariates. Elevated myo-inositol was associated with more tapping hits and lower MDS-UPDRS3 scores. Our neuroimaging study provides evidence that motor dysfunction in PD correlates with alterations in brain iron and neurometabolites.


Subject(s)
Brain/metabolism , Iron/metabolism , Metabolome , Motor Activity , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Aged , Case-Control Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged
11.
Ann Work Expo Health ; 62(1): 101-111, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29186301

ABSTRACT

Manganese (Mn) is an essential trace metal. It is also a component of welding fume. Chronic inhalation of manganese from welding fume has been associated with decreased neurological function. Currently, there is not a universally recognized biomarker for Mn exposure; however, hair and toenails have shown promise. In a cohort of 45 male welders and 35 age-matched factory control subjects, we assessed the sensitivity and specificity of toenail Mn to distinguish occupationally exposed subjects from unexposed controls. Further we examined the exposure time window that best correlates with the proposed biomarker, and investigated if non-occupational exposure factors impacted toenail Mn concentrations. Toenail clippings were analyzed for Mn using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Exposure to respirable Mn-containing particles (<4 µm) was estimated using an exposure model that combines personal air monitoring, work history information, and dietary intake to estimate an individual's exposure to Mn from inhalation of welding fume. We assessed the group differences in toenail concentrations using a Student's t-test between welders and control subjects and performed a receiver operating characteristic (ROC) curve analysis to identify a threshold in toenail concentration that has the highest sensitivity and specificity in distinguishing welders from control subjects. Additionally, we performed mixed-model regressions to investigate the association between different exposure windows and toenail Mn concentrations. We observed that toenail Mn concentrations were significantly elevated among welders compared to control subjects (6.87 ± 2.56 versus 2.70 ± 1.70 µg g-1; P < 0.001). Our results show that using a toenail Mn concentration of 4.14 µg g-1 as cutoff allows for discriminating between controls and welders with 91% specificity and 94% sensitivity [area under curve (AUC) = 0.98]. Additionally, we found that a threshold of 4.66 µg g-1 toenail Mn concentration enables a 90% sensitive and 90% specific discrimination (AUC = 0.96) between subjects with average exposure above or below the American Conference of Governmental Industrial Hygienist (ACGIH) Threshold Limit Value (TLV) of 0.02 mg m-3 during the exposure window of 7-12 months prior to the nail being clipped. Investigating which exposure window was best reflected by toenail Mn reproduced the result from another study of toenail Mn being significantly (P < 0.001) associated with exposure 7-12 months prior to the nail being clipped. Lastly, we found that dietary intake, body mass index, age, smoking status, and ethnicity had no significant effect on toenail Mn concentrations. Our results suggest that toenail Mn is a sensitive, specific, and easy-to-acquire biomarker of Mn exposure, which is feasible to be used in an industrial welder population.


Subject(s)
Air Pollutants, Occupational/analysis , Inhalation Exposure/analysis , Manganese/analysis , Nails/chemistry , Occupational Exposure/analysis , Welding , Adolescent , Adult , Area Under Curve , Biomarkers/analysis , Case-Control Studies , Cohort Studies , Humans , Industry , Ions/analysis , Male , Middle Aged , Sensitivity and Specificity , Toes , Young Adult
12.
Int J Radiat Oncol Biol Phys ; 99(2): 468-475, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28871998

ABSTRACT

PURPOSE: Few tools exist to predict clinical outcomes after radiopharmaceutical therapy. Our goal was to identify associations between blood-based biomarkers of radiation effect and clinical outcomes after 131I-metaiodobenzylguanidine (131I-MIBG) therapy in patients with neuroblastoma. METHODS AND MATERIALS: We conducted a prospective, single-center cohort study in children with advanced neuroblastoma treated with 131I-MIBG as monotherapy or in combination with systemic putative radiation sensitizers. We collected serial peripheral blood samples after 131I-MIBG infusions and quantified a panel of protein and messenger RNA markers. We plotted relative change from baseline to assess degree of modulation over time and then evaluated association of marker modulation with toxicity and response endpoints. RESULTS: The cohort included 40 patients (30 male/10 female; median age 7 years). We observed significant modulation of the majority of markers between baseline and hour 72 after 131I-MIBG. Greater fold increase of plasma FLT3 ligand was associated with subsequent grade 4 neutropenia (P=.039). Modulation of peripheral blood BCLXL and DDB2 was associated with grade 3+ nonhematologic toxicity (P=.043 and .048, respectively). No markers were associated with tumor response. Greater plasma FLT3 ligand, BCLXL, and BCL2 modulation was observed in patients receiving 131I-MIBG in combination with radiation sensitizers. Among 9 patients who received 2 courses, the degree of modulation in serum amylase was significantly lower after the second course (P=.012). CONCLUSIONS: Peripheral blood biomarkers relevant to radiation exposure are significantly modulated during the acute period after 131I-MIBG. The degree of modulation of a subset of these markers is associated with toxicity and receipt of concomitant radiation sensitizers.


Subject(s)
3-Iodobenzylguanidine/adverse effects , Biomarkers/blood , Neuroblastoma/blood , Radiopharmaceuticals/adverse effects , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Membrane Proteins/blood , Neutropenia/etiology , Pilot Projects , Prospective Studies , Radiation-Sensitizing Agents/therapeutic use
13.
Neuroimage ; 159: 32-45, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28716717

ABSTRACT

Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community.


Subject(s)
Brain/metabolism , Magnetic Resonance Spectroscopy/standards , gamma-Aminobutyric Acid/analysis , Adult , Datasets as Topic , Female , Humans , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Male , Young Adult
14.
Radiat Res ; 186(3): 235-44, 2016 09.
Article in English | MEDLINE | ID: mdl-27556353

ABSTRACT

Calculating internal dose from therapeutic radionuclides currently relies on estimates made from multiple radiation exposure measurements, converted to absorbed dose in specific organs using the Medical Internal Radiation Dose (MIRD) schema. As an alternative biodosimetric approach, we utilized gene expression analysis of whole blood from patients receiving targeted radiotherapy. Collected blood from patients with relapsed or refractory neuroblastoma who received (131)I-labeled metaiodobenzylguanidine ((131)I-mIBG) at the University of California San Francisco (UCSF) was used to compare calculated internal dose with the modulation of chosen gene expression. A total of 40 patients, median age 9 years, had blood drawn at baseline, 72 and 96 h after (131)I-mIBG infusion. Whole-body absorbed dose was calculated for each patient based on the cumulated activity determined from injected mIBG activity and patient-specific time-activity curves combined with (131)I whole-body S factors. We then assessed transcripts that were the most significant for describing the mixed therapeutic treatments over time using real-time polymerase chain reaction (RT-PCR). Modulation was evaluated statistically using multiple regression analysis for data at 0, 72 and 96 h. A total of 10 genes were analyzed across 40 patients: CDKN1A; FDXR; GADD45A; BCLXL; STAT5B; BAX; BCL2; DDB2; XPC; and MDM2. Six genes were significantly modulated upon exposure to (131)I-mIBG at 72 h, as well as at 96 h. Four genes varied significantly with absorbed dose when controlling for time. A gene expression biodosimetry model was developed to predict absorbed dose based on modulation of gene transcripts within whole blood. Three transcripts explained over 98% of the variance in the modulation of gene expression over the 96 h (CDKN1A, BAX and DDB2). To our knowledge, this is a novel study, which uses whole blood collected from patients treated with a radiopharmaceutical, to characterize biomarkers that may be useful for biodosimetry. Our data indicate that transcripts, which have been previously identified as biomarkers of external exposures in ex vivo whole blood and in vivo radiotherapy patients, are also good early indicators of internal exposure. However, for internal sources of radiation, the biokinetics and physical decay of the radionuclide strongly influence the gene expression.


Subject(s)
3-Iodobenzylguanidine/therapeutic use , Neuroblastoma/blood , Neuroblastoma/radiotherapy , Radiometry/methods , Adolescent , Adult , Child , Child, Preschool , Dose-Response Relationship, Radiation , Female , Humans , Male , Neuroblastoma/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Transcriptome/radiation effects , Whole-Body Irradiation , Young Adult
15.
Int J Mol Sci ; 10(12): 5471-84, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20054481

ABSTRACT

Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.


Subject(s)
Environmental Exposure , Environmental Illness/diagnosis , Environmental Illness/immunology , Stachybotrys/immunology , Trichothecenes/immunology , Adaptive Immunity , Adolescent , Adult , Case-Control Studies , Cell Proliferation , Child , Female , Humans , Immunoglobulins/blood , Male , Middle Aged , Skin Tests , T-Lymphocytes/immunology , Trichothecenes/blood
16.
Am J Ther ; 14(1): 116-8, 2007.
Article in English | MEDLINE | ID: mdl-17303980

ABSTRACT

INTRODUCTION: Oxaliplatin is a third generation organoplatinum complex used as an antineoplastic agent in combination with fluorouracil and leucovorin for colorectal carcinoma. Hypersensitivity reactions are commonly observed to oxaliplatin, with an incidence of 12% to 16%. Desensitization protocols for oxaliplatin with premedication using steroids or antihistamines have been previously reported. We present a patient who underwent successful repeat desensitization without premedication. CASE SUMMARY: A 43-year-old Asian male with metastatic rectal adenocarcinoma was started on chemotherapy with oxaliplatin and leucovorin followed by fluorouracil. Three hours after the first infusion of oxaliplatin, he developed generalized urticaria, which resolved with Benadryl. Similar symptoms developed after the second cycle. A desensitization protocol, without premedication, was developed for the third oxaliplatin cycle starting at 1:10,000 of the therapeutic dose followed by doubling doses thereafter until a cumulative goal dose of 175 mg was administered. Fluorouracil and leucovorin were then infused at the usual rates. Skin prick testing, before the procedure, using 5 mg/mL oxaliplatin was negative. Intracutaneous testing using dilutions of 1:1000, 1:100, and 1:10 were also negative. The patient was observed for 2 hours after the procedure without evidence of a hypersensitivity reaction. Two weeks later, the same protocol was successfully implemented for completion of his fourth cycle of chemotherapy and continued biweekly for a total of 11 cycles. Follow-up revealed tumor remission. CONCLUSION: A desensitization protocol without premedication may be considered in those patients with a history of oxaliplatin hypersensitivity reactions with avoidance of the cumulative exposure to pretreatment medications.


Subject(s)
Antineoplastic Agents/adverse effects , Desensitization, Immunologic/methods , Drug Eruptions/therapy , Organoplatinum Compounds/adverse effects , Adenocarcinoma/drug therapy , Adult , Antineoplastic Agents/therapeutic use , Humans , Male , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Rectal Neoplasms/drug therapy
17.
Ann Allergy Asthma Immunol ; 94(2): 234-9, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15765738

ABSTRACT

BACKGROUND: "Toxic mold syndrome" is a controversial diagnosis associated with exposure to mold-contaminated environments. Molds are known to induce asthma and allergic rhinitis through IgE-mediated mechanisms, to cause hypersensitivity pneumonitis through other immune mechanisms, and to cause life-threatening primary and secondary infections in immunocompromised patients. Mold metabolites may be irritants and may be involved in "sick building syndrome." Patients with environmental mold exposure have presented with atypical constitutional and systemic symptoms, associating those symptoms with the contaminated environment. OBJECTIVE: To characterize the clinical features and possible etiology of symptoms in patients with chief complaints related to mold exposure. METHODS: Review of patients presenting to an allergy and asthma center with the chief complaint of toxic mold exposure. Symptoms were recorded, and physical examinations, skin prick/puncture tests, and intracutaneous tests were performed. RESULTS: A total of 65 individuals aged 1 1/2 to 52 years were studied. Symptoms included rhinitis (62%), cough (52%), headache (34%), respiratory symptoms (34%), central nervous system symptoms (25%), and fatigue (23%). Physical examination revealed pale nasal mucosa, pharyngeal "cobblestoning," and rhinorrhea. Fifty-three percent (33/62) of the patients had skin reactions to molds. CONCLUSIONS: Mold-exposed patients can present with a variety of IgE- and non-IgE-mediated symptoms. Mycotoxins, irritation by spores, or metabolites may be culprits in non-IgE presentations; environmental assays have not been perfected. Symptoms attributable to the toxic effects of molds and not attributable to IgE or other immune mechanisms need further evaluation as to pathogenesis. Allergic, rather than toxic, responses seemed to be the major cause of symptoms in the studied group.


Subject(s)
Air Pollutants/immunology , Fungi/immunology , Hypersensitivity/etiology , Hypersensitivity/physiopathology , Adolescent , Adult , Child , Child, Preschool , Environmental Exposure , Female , Humans , Infant , Male , Middle Aged
18.
WMJ ; 103(7): 66-9, 2004.
Article in English | MEDLINE | ID: mdl-15696837

ABSTRACT

We present the case history of a 40-year-old man who developed renal artery dissection and thrombosis, probably due to cocaine use. The patient underwent exploratory laparotomy and thrombectomy. He remained asymptomatic and cocaine-free, and warfarin was discontinued 9 months after discharge. Approximately 12 months after discharge he returned to the hospital with symptoms very similar to previous episodes. He was found to have recurrent clot formation in the right renal artery. Further workup revealed a double heterozygous methyltetrahydrofolate reductase A1298C/C677T thermolabile polymorphism with an elevated serum homocysteine.


Subject(s)
Aortic Dissection/chemically induced , Cocaine-Related Disorders/complications , Cocaine/toxicity , Infarction/chemically induced , Kidney Diseases/chemically induced , Renal Artery Obstruction/chemically induced , Thrombosis/chemically induced , Adult , Humans , Kidney/blood supply , Male , Thrombolytic Therapy
19.
Emerg Med Clin North Am ; 20(4): 825-41, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12476882

ABSTRACT

Early reperfusion significantly reduces mortality and morbidity in patients with acute myocardial infarction [2-6]. Prehospital 12-lead ECG programs significantly decrease time to definitive reperfusion therapy [8-13]. The feasibility and safety of prehospital 12-lead ECG programs are well [figure: see text] established [8,11,13,14]. Additional potential benefits include increased diagnostic accuracy in the prehospital setting [14], providing a comparison ECG to the one obtained in-hospital [15], differentiating arrhythmias [16-18], and sensitive and specific computerized ECG interpretation [31,32]. Prehospital 12-lead ECG diagnostic programs also provide the necessary clinical information to implement system changes or interventions such as prehospital thrombolytic therapy, direct CCU admission, or triage to tertiary cardiac care centers [22,30,34,35]. The information acquired should be used optimally to effect significant improvements in patient care through a well planned and coordinated program.


Subject(s)
Ambulances , Diagnosis, Computer-Assisted/methods , Electrocardiography/methods , Myocardial Infarction/diagnosis , Triage/methods , Ambulances/economics , Cost-Benefit Analysis , Diagnosis, Computer-Assisted/economics , Electrocardiography/economics , Humans , Triage/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...