Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 129: 155685, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38696922

ABSTRACT

BACKGROUND: The genus Cytinus, recognised as one of the most enigmatic in the plant kingdom, has garnered attention for its bioactive potential, particularly its skin anti-ageing properties. Despite this recognition, much remains to be accomplished regarding deciphering and isolating its most active compounds. HYPOTHESIS: This study aimed to identify the compounds responsible for C. hypocistis skin anti-ageing potential. METHODS: Using multivariate analysis, a biochemometric approach was applied to identify the discriminant metabolites by integrating extracts' chemical profile (Liquid Chromatography-High-Resolution Mass Spectrometry, LCHRMS) and bioactive properties. The identified bioactive metabolite was structurally elucidated by 1D and 2D Nuclear Magnetic Resonance (NMR). RESULTS: Among the studied bioactivities, the anti-elastase results exhibited a significant variation among the samples from different years. After the biochemometric analysis, the compound 2,3:4,6-bis(hexahydroxydiphenoyl)glucose, with a molecular mass of 784.075 Da, was structurally elucidated as the discriminant feature responsible for the outstanding human neutrophil elastase inhibition. Remarkably, the subfraction containing this compound exhibited a tenfold improvement in neutrophil elastase inhibition efficacy compared to the crude extract; its effectiveness fell within the same range as SPCK, a potent irreversible neutrophil elastase inhibitor. Moreover, this subfraction displayed no cytotoxicity or phototoxicity and excellent efficacy for the tested anti-ageing properties. CONCLUSIONS: Hydrolysable tannins were confirmed as the metabolites behind C. hypocistis skin anti-ageing properties, effectively mitigating critical molecular mechanisms that influence the phenotypically distinct ageing clinical manifestations. Pedunculagin was particularly effective in inhibiting neutrophil elastase, considered one of the most destructive enzymes in skin ageing.

2.
Microorganisms ; 12(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399817

ABSTRACT

The discovery of new natural products has become more challenging because of the re-isolation of compounds and the lack of new sources. Microbes dwelling in extreme conditions of high salinity and temperature are huge prospects for interesting natural metabolites. In this study, the endophytic bacteria Bacillus velezensis 7NPB-3B isolated from the halophyte Salicornia brachiata was screened for its biofilm inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The fractionation of the crude extract was guided by bioassay and LC-HRMS-based metabolomics using multivariate analysis. The 37 fractions obtained by high-throughput chromatography were dereplicated using an in-house MS-Excel macro coupled with the Dictionary of Natural Products database. Successive bioactivity-guided separation yielded one novel compound (1), a diketopiperazine (m/z 469.258 [M - H]-) with an attached saturated decanoic acid chain, and four known compounds (2-5). The compounds were identified based on 1D- and 2D-NMR and mass spectrometry. Compounds 1 and 5 exhibited excellent biofilm inhibition properties of >90% against the MRSA pathogen at minimum inhibition concentrations of 25 and 35 µg/mL, respectively. The investigation resulted in the isolation of a novel diketopiperazine from a bacterial endophyte of an untapped plant using an omics approach.

3.
Curr Med Chem ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38375850

ABSTRACT

BACKGROUND: Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessel diseases. Several studies have been conducted to identify antithrombotic agents from medicinal plants, and phenolic compounds (PCs) have been shown to effectively inhibit plasma coagulation and platelet aggregation. OBJECTIVES: This study aimed to conduct a survey of the natural PCs with proven antithrombotic and antiplatelet activities, as well as to evaluate by computational modeling the physicochemical and toxicological properties of these compounds using drug-likeness approaches. METHODS: The data were collected from the scientific database: 'Web of Science', 'Scifinder', 'Pubmed', 'ScienceDirect' and 'Google Scholar', the different classes of PCs with antithrombotic or antiplatelet effects were used as keywords. These molecules were also evaluated for their Drug-Likeness properties and toxicity to verify their profile for being candidates for new antithrombotic drugs. RESULTS: In this review, it was possible to register 85 lignans, 73 flavonoids, 28 coumarins, 21 quinones, 23 phenolic acids, 8 xanthones and 8 simple phenols. Activity records for tannins were not found in the researched databases. Of these 246 compounds, 213 did not violate any of Lipinski's rules of five, of which 125 (59%) showed non-toxicity, being promising candidates for new potential antithrombotic drugs. CONCLUSION: This review arouses interest in the isolation of phenolic compounds that may allow a new approach for the prevention of both arterial and venous thrombosis, with the potential to become alternatives in the prevention and treatment of cardiovascular diseases.

4.
Microorganisms ; 11(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894221

ABSTRACT

Genome mining and metabolomics have become valuable tools in natural products research to evaluate and identify potential new chemistry from bacteria. In the search for new compounds from the deep-sea organism, Pseudomonas sp. SST3, from the South Shetland Trough, Antarctica, a co-cultivation with a second deep-sea Pseudomonas zhaodongensis SST2, was undertaken to isolate pseudomonassin, a ribosomally synthesised and post-translationally modified peptide (RiPP) that belongs to a class of RiPP called lasso peptides. Pseudomonassin was identified using a genome-mining approach and isolated by means of mass spectrometric guided isolation. Extensive metabolomics analysis of the co-cultivation of Pseudomonas sp. SST3 and P. zhaodongensis SST2, Pseudomonas sp. SST3 and Escherichia coli, and P. zhaodongensis SST2 and E. coli were performed using principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA), which revealed potential new metabolites in the outlier regions of the co-cultivation, with other metabolites identified previously from other species of Pseudomonas. The sequence of pseudomonassin was completely deduced using high collision dissociation tandem mass spectrometry (HCD-MS/MS). Preliminary studies on its activity against the pathogenic P. aeruginosa and its biofilm formation have been assessed and produced a minimum inhibitory concentration (MIC) of 63 µg/mL and 28 µg/mL, respectively.

5.
Chem Biodivers ; 20(9): e202300650, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37540773

ABSTRACT

The Lauraceae is a botanical family known for its anti-inflammatory potential. However, several species have not yet been studied. Thus, this work aimed to screen the anti-inflammatory activity of this plant family and to build statistical prediction models. The methodology was based on the statistical analysis of high-resolution liquid chromatography coupled with mass spectrometry data and the ex vivo anti-inflammatory activity of plant extracts. The ex vivo results demonstrated significant anti-inflammatory activity for several of these plants for the first time. The sample data were applied to build anti-inflammatory activity prediction models, including the partial least square acquired, artificial neural network, and stochastic gradient descent, which showed adequate fitting and predictive performance. Key anti-inflammatory markers, such as aporphine and benzylisoquinoline alkaloids were annotated with confidence level 2. Additionally, the validated prediction models proved to be useful for predicting active extracts using metabolomics data and studying their most bioactive metabolites.


Subject(s)
Alkaloids , Lauraceae , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metabolomics , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid
6.
Plants (Basel) ; 12(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375922

ABSTRACT

BACKGROUND: Plants from the Asteraceae family were commonly used to treat various diseases. The metabolomic profile of this family consisted of bioactive flavonoids and other phenolics. Chamomile is a member of the Asteraceae family. Jordanian and European chamomile are two varieties of Matricaria chamomilla (German chamomile), which were grown under different environmental conditions, were studied. Many examples of plant varieties with significant distinction in the secondary metabolite they afford have been described in the literature. Multivariate statistical analysis was employed to measure the depth of this variation in two chamomile varieties. METHODS: From both types, crude extracts were prepared using solvents of different polarities and tested for their biological activity. The semipolar fraction of the European variety showed anticancer and antioxidant activity. Meanwhile, the semipolar fraction of the Jordanian type exhibited only antioxidant activity. Both extracts were fractionated, and then the biological activity was again assayed. RESULTS: European and Jordanian chamomile fractions produced dicaffeoylquinic acid isomers exhibiting antioxidant capability. Additionally, Z-glucoferulic acid was produced from the European chamomile, demonstrating antioxidant activity. The European samples afforded two major compounds, chrysosplenetin and apigenin, that displayed anticancer activity. CONCLUSIONS: Different environmental conditions between Jordanian and European chamomile affected the type of isolated compounds. Structure elucidation was performed with HPLC-MS coupled with dereplication techniques and 2D NMR experiments.

7.
Metabolites ; 13(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36984789

ABSTRACT

Terminalia catappa L. (Combretaceae) is a medicinal plant that is part of the Brazilian biodiversity; this plant is popularly used for the treatment of a wide range of diseases. To better understand the chemical composition of T. catappa in different seasons, we conducted a thorough study using LC-MS and NMR data analysis techniques. The study helped obtain a chemical profile of the plant ethanolic extracts in different seasons of the year (spring, summer, autumn, and winter). The dereplication of LC-HRMS data allowed the annotation of 90 compounds in the extracts of T. catappa (hydrolyzable tannins, ellagic acid derivatives, and glycosylated flavonoids). Triterpenes and C-glycosyl flavones were the compounds that significantly contributed to differences observed between T. catappa plant samples harvested in autumn/winter and spring, respectively. The variations observed in the compound composition of the plant leaves may be related to processes induced by environmental stress and leaf development. Data fusion applied in the metabolomic profiling study allowed us to identify metabolites with greater confidence, and provided a better understanding regarding the production of specialized metabolites in T. catappa leaves under different environmental conditions, which may be useful to establish appropriate quality criteria for the standardization of this medicinal plant.

8.
Plants (Basel) ; 11(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35336596

ABSTRACT

The genus Salsola L. (Russian thistle, Saltwort) includes halophyte plants and is considered one of the largest genera in the family Amaranthaceae. The genus involves annual semi-dwarf to dwarf shrubs and woody tree. The genus Salsola is frequently overlooked, and few people are aware of its significance. The majority of studies focus on pollen morphology and species identification. Salsola has had little research on its phytochemical makeup or biological effects. Therefore, we present this review to cover all aspects of genus Salsola, including taxonomy, distribution, differences in the chemical constituents and representative examples of isolated compounds produced by various species of genus Salsola and in relation to their several reported biological activities for use in folk medicine worldwide.

9.
Metabolites ; 12(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35050207

ABSTRACT

This study aims to compare the metabolomic profiles of Malaysian and New Zealand honey while determining their anti-oncogenic activity for potential prophylactic functions. Metabolomics tools including multivariate analysis were applied on concatenated LC-HRMS and NMR datasets to afford an intensive chemical profile of honey samples and have a snapshot of the bioactive metabolites in the respective collections. Malaysian samples were found to have higher sugar and polyphenolic content, while New Zealand samples afforded higher concentration of low molecular weight (MW) lipids. However, New Zealand honey collected from the northern islands had higher concentration of acetylated saccharides, while those from the southern islands yielded higher low MW phenolic metabolites that were comparable to Malaysian honey. Mild anti-oncogenic compounds against breast cancer cell line ZR75 were putatively identified in Malaysian honey that included earlier described antioxidants such as gingerdiol, 2-hexylphenol-O-ß-D-xylopyranoside, plastoquinone, tropine isovalerate, plumerinine, and 3,5-(12-phenyl-8-dodecenyl)resorcinol, along with several phenolic esters and lignans.

11.
Front Chem ; 9: 710025, 2021.
Article in English | MEDLINE | ID: mdl-34295876

ABSTRACT

Seasonality is one of the major environmental factors that exert influence over the synthesis and accumulation of secondary metabolites in medicinal plants. The application of the metabolomics approach for quality control of plant extracts is essentially important because it helps one to establish a standard metabolite profile and to analyze factors that affect the effectiveness of the medicinal plants. The Brazilian Cerrado flora is characterized by a rich diversity of native plant species, and a number of these plant species have been found to have suitable medicinal properties. Some of these plant species include Byrsonima intermedia and Serjania marginata. To better understand the chemical composition of these plant species, we conducted a study using the state-of-the-art techniques including the HPLC system coupled to an Exactive-Orbitrap high resolution mass spectrometer with electrospray ionization interface UHPLC-(ESI)-HRMS and by NMR being performed 2D J-resolved and proton NMR spectroscopy. For the analysis, samples were harvested bimonthly during two consecutive years. UHPLC-(ESI)-HRMS data were preprocessed and the output data uploaded into an in-house Excel macro for peak dereplication. MS and NMR data were concatenated using the data fusion method and submitted to multivariate statistical analysis. The dereplication of LC-HRMS data helped in the annotation of the major compounds present in the extracts of the three plant species investigated allowing the annotation of 68 compounds in the extracts of B. intermedia (cinnamic acids, phenolic acids derived from galloyl quinic and shikimic acid, proanthocyanidins, glycosylated flavonoids, triterpenes and other phenols) and 81 compounds in the extracts of S. marginata (phenolic acids, saponins, proanthocyanidins, glycosylated flavonoids among other compounds). For a better assessment of the great number of responses, the significance of the chemical variables for the differentiation and correlation of the seasons was determined using the variable importance on projection (VIP) technique and through the application of the false discovery rate (FDR) estimation. The statistical data obtained showed that seasonal factors played an important role on the production of metabolites in each plant species. Temperature conditions, drought and solar radiation were found to be the main factors that affected the variability of phenolic compounds in each species.

12.
Biology (Basel) ; 10(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806264

ABSTRACT

Three species of the lichen Usnea (U. baileyi (Stirt.) Zahlbr., U. bismolliuscula Zahlbr. and U. pectinata Stirt.) and nine associated endolichenic fungi (ELF) were evaluated using a metabolomics approach. All investigated lichen crude extracts afforded antibacterial activity against Staphylococcus aureus (minimum inhibitory concentration (MIC): 0.0625 mg/mL), but none was observed against Escherichia coli, while the ELF extract Xylaria venustula was found to be the most active against S. aureus (MIC: 2.5 mg/mL) and E. coli (MIC: 5 mg/mL). X. venustula was fractionated and tested for to determine its antibacterial activity. Fractions XvFr1 to 5 displayed bioactivities against both test bacteria. Selected crude extracts and fractions were subjected to metabolomics analyses using high-resolution LC-MS. Multivariate analyses showed the presence of five secondary metabolites unique to bioactive fractions XvFr1 to 3, which were identified as responsible for the antibacterial activity of X. venustula. The p-values of these metabolites were at the margin of significance level, with methyl xylariate C (P_60) being the most significant. However, their high variable importance of projection (VIP) scores (>5) suggest these metabolites are potential diagnostic metabolites for X. venustula for "dual" bioactivity against S. aureus and E. coli. The statistical models also showed the distinctiveness of metabolites produced by lichens and ELF, thus supporting our hypotheses of ELF functionality similar to plant endophytes.

13.
Microorganisms ; 9(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546180

ABSTRACT

With more than 156,000 described species, eukaryotic algae (both macro- and micro-algae) are a rich source of biological diversity, however their chemical diversity remains largely unexplored. Specialised metabolites with promising biological activities have been widely reported for seaweeds, and more recently extracts from microalgae have exhibited activity in anticancer, antimicrobial, and antioxidant screens. However, we are still missing critical information on the distinction of chemical profiles between macro- and microalgae, as well as the chemical space these metabolites cover. This study has used an untargeted comparative metabolomics approach to explore the chemical diversity of seven seaweeds and 36 microalgal strains. A total of 1390 liquid chromatography-mass spectrometry (LC-MS) features were detected, representing small organic algal metabolites, with no overlap between the seaweeds and microalgae. An in-depth analysis of four Dunaliella tertiolecta strains shows that environmental factors may play a larger role than phylogeny when classifying their metabolomic profiles.

14.
J Med Food ; 24(5): 541-550, 2021 May.
Article in English | MEDLINE | ID: mdl-32758061

ABSTRACT

Dysmenorrhea is painful menstrual periods, which affects 25% of women within reproductive age and has a prevalence of 67.2-90.0%. Current treatment has several adverse effects and can be ineffective once the pain is initiated. Thymus vulgaris traditionally used for pain management was investigated in this study for its activity on uterine contraction in the nonpregnant uterus, as a parameter for dysmenorrhea. The dried leaves of T. vulgaris were macerated in water, and the resulting aqueous extract was investigated on the isolated mouse uterus. Parameters investigated included spontaneous contractions, oxytocin-induced contractions, and high potassium chloride (KCl; 80 mM)-induced tonic contractions. Mass spectrometric analysis of the thyme extract was also performed using liquid chromatography-high-resolution Fourier Transform mass spectrometry. Thyme extract inhibited the amplitude and frequency of spontaneous and oxytocin-induced uterine contractions. It also inhibited KCl-induced tonic contractions. The activities observed suggest that T. vulgaris inhibits uterine contractions through blockade of extracellular voltage-gated calcium channels. Secondary metabolites detected included compounds belonging to chlorogenic phytochemical class and flavonoids, which are known to have activities on extracellular calcium blockade. This study has shown that aqueous T. vulgaris extract, also known as thyme, inhibits contractions of the nonpregnant uterus and can be a lead plant in the drug discovery process for the management of dysmenorrhea.


Subject(s)
Lamiaceae , Thymus Plant , Animals , Female , Mice , Plant Leaves , Pregnancy , Uterine Contraction , Uterus
15.
Mar Drugs ; 18(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371387

ABSTRACT

The discovery of new secondary metabolites from natural origins has become more challenging in natural products research. Different approaches have been applied to target the isolation of new bioactive metabolites from plant extracts. In this study, bioactive natural products were isolated from the crude organic extract of the mangrove plant Avicennia lanata collected from the east coast of Peninsular Malaysia in the Setiu Wetlands, Terengganu, using HRESI-LCMS-based metabolomics-guided isolation and fractionation. Isolation work on the crude extract A. lanata used high-throughput chromatographic techniques to give two new naphthofuranquinone derivatives, hydroxyavicenol C (1) and glycosemiquinone (2), along with the known compounds avicenol C (3), avicequinone C (4), glycoquinone (5), taraxerone (6), taraxerol (7), ß-sitosterol (8) and stigmasterol (9). The elucidation and identification of the targeted bioactive compounds used 1D and 2D-NMR and mass spectrometry. Except for 6-9, all isolated naphthoquinone compounds (1-5) from the mangrove plant A. lanata showed significant anti-trypanosomal activity on Trypanosoma brucei brucei with MIC values of 3.12-12.5 µM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing moderate cytotoxicity of 78.3% and 68.6% of the control values at 100 µg/mL, respectively.


Subject(s)
Antiprotozoal Agents/isolation & purification , Avicennia , Furans/isolation & purification , Naphthoquinones/isolation & purification , Plant Extracts/isolation & purification , Trypanosoma brucei brucei/drug effects , Antiprotozoal Agents/pharmacology , Cell Line , Furans/pharmacology , Humans , Naphthoquinones/pharmacology , Plant Extracts/pharmacology , Trypanosoma brucei brucei/physiology
17.
Sci Rep ; 10(1): 8279, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427928

ABSTRACT

Macrocystis pyrifera and Lessonia spicata are economically and ecologically relevant brown seaweeds that recently have been classified as members of two separated families within Laminariales (kelps). Here we describe for the first time the Macrocystis pyrifera x Lessonia spicata hybridization in the wild (Chiloe Island, Southeastern Pacific), where populations of the two parents exist sympatrically. Externally, this hybrid exhibited typical features of its parents M. pyrifera (cylindrical and flexible distal stipes, serrate frond margins and presence of sporophylls) and L. spicata (rigid and flat main stipe and first bifurcation), as well as intermediate features between them (thick unfused haptera in the holdfast). Histological sections revealed the prevalence of mucilage ducts within stipes and fronds (absent in Lessonia) and fully developed unilocular sporangia in the sporophylls. Molecular analyses confirmed the presence of the two parental genotypes for ITS1 nrDNA and the M. pyrifera genotype for two predominantly maternally inherited cytoplasmic markers (COI and rbcLS spacer) in the tissue of the hybrid. A metabolome-wide approach revealed that this hybrid is more chemically reminiscent to M. pyrifera. Nevertheless, several hits were identified as Lessonia exclusive or more remarkably, not present in any of the parent. Meiospores developed into apparently fertile gametophytes, which gave rise to F1 sporophytes that reached several millimeters before suddenly dying. In-vitro reciprocal crossing of Mar Brava gametophytes from both species revealed that although it is rare, interfamilial hybridization between the two species is possible but mostly overcome by pseudogamy of female gametophytes.


Subject(s)
Genotyping Techniques/methods , Laminaria/physiology , Macrocystis/physiology , Metabolomics/methods , DNA, Algal/genetics , Genotype , Hybridization, Genetic , Plant Breeding , Sporangia/physiology , Sympatry
18.
Sci Adv ; 6(11): eaax6328, 2020 03.
Article in English | MEDLINE | ID: mdl-32195337

ABSTRACT

Alterations to the gut microbiome are associated with various neurological diseases, yet evidence of causality and identity of microbiome-derived compounds that mediate gut-brain axis interaction remain elusive. Here, we identify two previously unknown bacterial metabolites 3-methyl-4-(trimethylammonio)butanoate and 4-(trimethylammonio)pentanoate, structural analogs of carnitine that are present in both gut and brain of specific pathogen-free mice but absent in germ-free mice. We demonstrate that these compounds are produced by anaerobic commensal bacteria from the family Lachnospiraceae (Clostridiales) family, colocalize with carnitine in brain white matter, and inhibit carnitine-mediated fatty acid oxidation in a murine cell culture model of central nervous system white matter. This is the first description of direct molecular inter-kingdom exchange between gut prokaryotes and mammalian brain cells, leading to inhibition of brain cell function.


Subject(s)
Carnitine , Clostridiales/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa , White Matter/metabolism , Animals , Carnitine/analogs & derivatives , Carnitine/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mice
20.
Expert Opin Drug Discov ; 15(4): 499-522, 2020 04.
Article in English | MEDLINE | ID: mdl-32026730

ABSTRACT

Introduction: The marine environment is a very promising resource for natural product research, with many of these reaching the market as new drugs, especially in the field of cancer therapy as well as the drug discovery pipeline for new antimicrobials. Exploitation for bioactive marine compounds with unique structures and novel bioactivity such as the isoquinoline alkaloid; trabectedin, the polyether macrolide; halichondrin B, and the peptide; dolastatin 10, requires the use of analytical techniques, which can generate unbiased, quantitative, and qualitative data to benefit the biodiscovery process. Metabolomics has shown to bridge this understanding and facilitate the development of new potential drugs from marine sources and particularly their microbial symbionts.Areas covered: In this review, articles on applied secondary metabolomics ranging from 1990-2018 as well as to the last quarter of 2019 were probed to investigate the impact of metabolomics on drug discovery for new antibiotics and cancer treatment.Expert opinion: The current literature review highlighted the effectiveness of metabolomics in the study of targeting biologically active secondary metabolites from marine sources for optimized discovery of potential new natural products to be made accessible to a R&D pipeline.


Subject(s)
Biological Products/pharmacology , Drug Discovery/methods , Metabolomics/methods , Animals , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Aquatic Organisms/metabolism , Biological Products/isolation & purification , Drug Development/methods , Humans , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...