Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38645179

ABSTRACT

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.

2.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475709

ABSTRACT

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Genome, Human , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Proteins/genetics , Transcription Factors/metabolism
3.
Am J Hum Genet ; 111(2): 280-294, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38183988

ABSTRACT

Eosinophilic esophagitis (EoE) is a rare atopic disorder associated with esophageal dysfunction, including difficulty swallowing, food impaction, and inflammation, that develops in a small subset of people with food allergies. Genome-wide association studies (GWASs) have identified 9 independent EoE risk loci reaching genome-wide significance (p < 5 × 10-8) and 27 additional loci of suggestive significance (5 × 10-8 < p < 1 × 10-5). In the current study, we perform linkage disequilibrium (LD) expansion of these loci to nominate a set of 531 variants that are potentially causal. To systematically interrogate the gene regulatory activity of these variants, we designed a massively parallel reporter assay (MPRA) containing the alleles of each variant within their genomic sequence context cloned into a GFP reporter library. Analysis of reporter gene expression in TE-7, HaCaT, and Jurkat cells revealed cell-type-specific gene regulation. We identify 32 allelic enhancer variants, representing 6 genome-wide significant EoE loci and 7 suggestive EoE loci, that regulate reporter gene expression in a genotype-dependent manner in at least one cellular context. By annotating these variants with expression quantitative trait loci (eQTL) and chromatin looping data in related tissues and cell types, we identify putative target genes affected by genetic variation in individuals with EoE. Transcription factor enrichment analyses reveal possible roles for cell-type-specific regulators, including GATA3. Our approach reduces the large set of EoE-associated variants to a set of 32 with allelic regulatory activity, providing functional insights into the effects of genetic variation in this disease.


Subject(s)
Enteritis , Eosinophilia , Eosinophilic Esophagitis , Gastritis , Humans , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/complications , Genome-Wide Association Study , Genotype , Quantitative Trait Loci/genetics
4.
PLoS Genet ; 18(5): e1009973, 2022 05.
Article in English | MEDLINE | ID: mdl-35576187

ABSTRACT

Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4+ T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-κB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-κB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding.


Subject(s)
CD4-Positive T-Lymphocytes , Dermatitis, Atopic , CD4-Positive T-Lymphocytes/metabolism , Child , Chromatin/genetics , DNA , Dermatitis, Atopic/genetics , Epigenesis, Genetic , Humans , NF-kappa B/metabolism
5.
Genome Res ; 31(12): 2185-2198, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34799401

ABSTRACT

The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.

6.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34330753

ABSTRACT

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Subject(s)
Chromatin/genetics , Eosinophils/metabolism , Epigenesis, Genetic/genetics , Protein Binding/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Animals , Cells, Cultured , Mice , Mice, Inbred BALB C , Myeloid Cells , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics
7.
Genome Biol Evol ; 11(10): 3035-3053, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31599933

ABSTRACT

Changes in transcriptional regulation are thought to be a major contributor to the evolution of phenotypic traits, but the contribution of changes in chromatin accessibility to the evolution of gene expression remains almost entirely unknown. To address this important gap in knowledge, we developed a new method to identify DNase I Hypersensitive (DHS) sites with differential chromatin accessibility between species using a joint modeling approach. Our method overcomes several limitations inherent to conventional threshold-based pairwise comparisons that become increasingly apparent as the number of species analyzed rises. Our approach employs a single quantitative test which is more sensitive than existing pairwise methods. To illustrate, we applied our joint approach to DHS sites in fibroblast cells from five primates (human, chimpanzee, gorilla, orangutan, and rhesus macaque). We identified 89,744 DHS sites, of which 41% are identified as differential between species using the joint model compared with 33% using the conventional pairwise approach. The joint model provides a principled approach to distinguishing single from multiple chromatin accessibility changes among species. We found that nondifferential DHS sites are enriched for nucleotide conservation. Differential DHS sites with decreased chromatin accessibility relative to rhesus macaque occur more commonly near transcription start sites (TSS), while those with increased chromatin accessibility occur more commonly distal to TSS. Further, differential DHS sites near TSS are less cell type-specific than more distal regulatory elements. Taken together, these results point to distinct classes of DHS sites, each with distinct characteristics of selection, genomic location, and cell type specificity.


Subject(s)
Chromatin/chemistry , Evolution, Molecular , Animals , Cell Line , Deoxyribonuclease I , Genomics , Gorilla gorilla/genetics , Humans , Macaca mulatta/genetics , Models, Genetic , Pan troglodytes/genetics , Pongo/genetics , Transcription Initiation Site
8.
Nucleic Acids Res ; 45(20): 11684-11699, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28977539

ABSTRACT

Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.


Subject(s)
Cell Transdifferentiation/genetics , Cellular Reprogramming/genetics , Chromatin Assembly and Disassembly/genetics , MyoD Protein/genetics , Blotting, Western , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling/methods , Gene Ontology , HEK293 Cells , Humans , Microscopy, Confocal , MyoD Protein/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin/cytology
9.
Nature ; 518(7539): 350-354, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25693566

ABSTRACT

Allelic differences between the two homologous chromosomes can affect the propensity of inheritance in humans; however, the extent of such differences in the human genome has yet to be fully explored. Here we delineate allelic chromatin modifications and transcriptomes among a broad set of human tissues, enabled by a chromosome-spanning haplotype reconstruction strategy. The resulting large collection of haplotype-resolved epigenomic maps reveals extensive allelic biases in both chromatin state and transcription, which show considerable variation across tissues and between individuals, and allow us to investigate cis-regulatory relationships between genes and their control sequences. Analyses of histone modification maps also uncover intriguing characteristics of cis-regulatory elements and tissue-restricted activities of repetitive elements. The rich data sets described here will enhance our understanding of the mechanisms by which cis-regulatory elements control gene expression programs.


Subject(s)
Alleles , Epigenesis, Genetic/genetics , Epigenomics , Haplotypes/genetics , Acetylation , Chromatin/genetics , Chromatin/metabolism , Chromosomes, Human/genetics , Datasets as Topic , Enhancer Elements, Genetic/genetics , Genetic Variation/genetics , Histones/metabolism , Humans , Nucleotide Motifs , Organ Specificity/genetics , Transcription, Genetic/genetics
10.
Nucleic Acids Res ; 43(2): 1268-82, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25567984

ABSTRACT

FOXP3 is a lineage-specific transcription factor that is required for regulatory T cell development and function. In this study, we determined the crystal structure of the FOXP3 forkhead domain bound to DNA. The structure reveals that FOXP3 can form a stable domain-swapped dimer to bridge DNA in the absence of cofactors, suggesting that FOXP3 may play a role in long-range gene interactions. To test this hypothesis, we used circular chromosome conformation capture coupled with high throughput sequencing (4C-seq) to analyze FOXP3-dependent genomic contacts around a known FOXP3-bound locus, Ptpn22. Our studies reveal that FOXP3 induces significant changes in the chromatin contacts between the Ptpn22 locus and other Foxp3-regulated genes, reflecting a mechanism by which FOXP3 reorganizes the genome architecture to coordinate the expression of its target genes. Our results suggest that FOXP3 mediates long-range chromatin interactions as part of its mechanisms to regulate specific gene expression in regulatory T cells.


Subject(s)
Chromosomes/chemistry , DNA/chemistry , Forkhead Transcription Factors/chemistry , Animals , DNA/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Humans , Mice, Inbred C57BL , Models, Molecular , Protein Multimerization , Protein Structure, Tertiary , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
11.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409824

ABSTRACT

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Subject(s)
Genome/genetics , Genomics , Mice/genetics , Molecular Sequence Annotation , Animals , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
12.
Mol Cell ; 56(2): 286-297, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25263596

ABSTRACT

In mammals, cytosine methylation (5mC) is widely distributed throughout the genome but is notably depleted from active promoters and enhancers. While the role of DNA methylation in promoter silencing has been well documented, the function of this epigenetic mark at enhancers remains unclear. Recent experiments have demonstrated that enhancers are enriched for 5-hydroxymethylcytosine (5hmC), an oxidization product of the Tet family of 5mC dioxygenases and an intermediate of DNA demethylation. These results support the involvement of Tet proteins in the regulation of dynamic DNA methylation at enhancers. By mapping DNA methylation and hydroxymethylation at base resolution, we find that deletion of Tet2 causes extensive loss of 5hmC at enhancers, accompanied by enhancer hypermethylation, reduction of enhancer activity, and delayed gene induction in the early steps of differentiation. Our results reveal that DNA demethylation modulates enhancer activity, and its disruption influences the timing of transcriptome reprogramming during cellular differentiation.


Subject(s)
Cell Differentiation/genetics , DNA Methylation/genetics , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic/genetics , Proto-Oncogene Proteins/metabolism , 5-Methylcytosine/metabolism , Animals , Base Sequence , Cell Line , Cytosine/analogs & derivatives , Cytosine/metabolism , DNA-Binding Proteins/genetics , Dioxygenases , Mice , Mice, Knockout , Oxidation-Reduction , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Sequence Analysis, DNA , Transcriptome/genetics , Zinc Fingers/genetics
13.
Cell ; 153(5): 1134-48, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23664764

ABSTRACT

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Subject(s)
DNA Methylation , Embryonic Stem Cells/metabolism , Epigenomics , Gene Expression Regulation, Developmental , Animals , Cell Differentiation , Chromatin/metabolism , CpG Islands , Embryonic Stem Cells/cytology , Histones/metabolism , Humans , Methylation , Neoplasms/genetics , Promoter Regions, Genetic , Zebrafish/embryology
14.
PLoS One ; 7(11): e50205, 2012.
Article in English | MEDLINE | ID: mdl-23189188

ABSTRACT

Retinitis Pigmentosa (RP) is a common form of retinal degeneration characterized by photoreceptor degeneration and retinal pigment epithelium (RPE) atrophy causing loss of visual field and acuities. Exome sequencing identified a novel homozygous splice site variant (c.111+1G>A) in the gene encoding retinol binding protein 4 (RBP4). This change segregated with early onset, progressive, and severe autosomal recessive retinitis pigmentosa (arRP) in an eight member consanguineous pedigree of European ancestry. Additionally, one patient exhibited developmental abnormalities including patent ductus arteriosus and chorioretinal and iris colobomas. The second patient developed acne from young age and extending into the 5(th) decade. Both patients had undetectable levels of RBP4 in the serum suggesting that this mutation led to either mRNA or protein instability resulting in a null phenotype. In addition, the patients exhibited severe vitamin A deficiency, and diminished serum retinol levels. Circulating transthyretin levels were normal. This study identifies the RBP4 splice site change as the cause of RP in this pedigree. The presence of developmental abnormalities and severe acne in patients with retinal degeneration may indicate the involvement of genes that regulate vitamin A absorption, transport and metabolism.


Subject(s)
Developmental Disabilities/genetics , Exome , Mutation , Retinal Dystrophies/genetics , Retinol-Binding Proteins, Plasma/genetics , Adult , Base Sequence , Consanguinity , Electroretinography , Female , Humans , Male , Middle Aged , Pedigree , Phenotype , Prealbumin/metabolism , Retinal Dystrophies/metabolism , Retinal Dystrophies/pathology , Retinol-Binding Proteins, Plasma/metabolism , Visual Fields , Vitamin A/blood
15.
Nature ; 488(7409): 116-20, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22763441

ABSTRACT

The laboratory mouse is the most widely used mammalian model organism in biomedical research. The 2.6 × 10(9) bases of the mouse genome possess a high degree of conservation with the human genome, so a thorough annotation of the mouse genome will be of significant value to understanding the function of the human genome. So far, most of the functional sequences in the mouse genome have yet to be found, and the cis-regulatory sequences in particular are still poorly annotated. Comparative genomics has been a powerful tool for the discovery of these sequences, but on its own it cannot resolve their temporal and spatial functions. Recently, ChIP-Seq has been developed to identify cis-regulatory elements in the genomes of several organisms including humans, Drosophila melanogaster and Caenorhabditis elegans. Here we apply the same experimental approach to a diverse set of 19 tissues and cell types in the mouse to produce a map of nearly 300,000 murine cis-regulatory sequences. The annotated sequences add up to 11% of the mouse genome, and include more than 70% of conserved non-coding sequences. We define tissue-specific enhancers and identify potential transcription factors regulating gene expression in each tissue or cell type. Finally, we show that much of the mouse genome is organized into domains of coordinately regulated enhancers and promoters. Our results provide a resource for the annotation of functional elements in the mammalian genome and for the study of mechanisms regulating tissue-specific gene expression.


Subject(s)
Gene Expression Regulation/genetics , Genome/genetics , Mice/genetics , Physical Chromosome Mapping , Regulatory Sequences, Nucleic Acid/genetics , Acetylation , Animals , Chromatin/metabolism , Chromatin Immunoprecipitation , Conserved Sequence , Enhancer Elements, Genetic/genetics , Evolution, Molecular , Male , Methylation , Mice, Inbred C57BL , Molecular Sequence Annotation , Nucleotide Motifs , Organ Specificity , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Transcription Factors/metabolism
16.
Dev Genes Evol ; 222(1): 29-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22358128

ABSTRACT

Gap junctional proteins are important components of signaling pathways required for the development and ongoing functions of all animal tissues, particularly the nervous system, where they function in the intracellular and extracellular exchange of small signaling factors and ions. In animals whose genomes have been sufficiently sequenced, large families of these proteins, connexins, pannexins, and innexins, have been found, with 25 innexins in the nematode Caenorhabditis elegans Starich et al. (Cell Commun Adhes 8: 311-314, 2001) and at least 37 connexins in the zebrafish Danio rerio Cruciani and Mikalsen (Biol Chem 388:253-264, 2009). Having recently sequenced the medicinal leech Hirudo verbana genome, we now report the presence of 21 innexin genes in this species, nine more than we had previously reported from the analysis of an EST-derived transcriptomic database Dykes and Macagno (Dev Genes Evol 216: 185-97, 2006); Macagno et al. (BMC Genomics 25:407, 2010). Gene structure analyses show that, depending on the leech innexin gene, they can contain from 0 to 6 introns, with closely related paralogs showing the same number of introns. Phylogenetic trees comparing Hirudo to another distantly related leech species, Helobdella robusta, shows a high degree of orthology, whereas comparison to other annelids shows a relatively low level. Comparisons with other Lophotrochozoans, Ecdyzozoans and with vertebrate pannexins suggest a low number (one to two) of ancestral innexin/pannexins at the protostome/deuterostome split. Whole-mount in situ hybridization for individual genes in early embryos shows that ∼50% of the expressed innexins are detectable in multiple tissues. Expression analyses using quantitative PCR show that ∼70% of the Hirudo innexins are expressed in the nervous system, with most of these detected in early development. Finally, quantitative PCR analysis of several identified adult neurons detects the presence of different combinations of innexin genes, a property that may underlie the participation of these neurons in different adult coupling circuits.


Subject(s)
Leeches/genetics , Leeches/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Central Nervous System/cytology , Central Nervous System/metabolism , Exons , Female , Gap Junctions/metabolism , Gene Expression Regulation, Developmental , Leeches/cytology , Leeches/embryology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Neuroglia/metabolism , Phylogeny
17.
Genome Res ; 22(2): 246-58, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156296

ABSTRACT

While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells.


Subject(s)
Breast Neoplasms/genetics , Chromatin Assembly and Disassembly , DNA Methylation , Gene Silencing , Alleles , Breast Neoplasms/metabolism , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Cluster Analysis , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , Models, Genetic , Repetitive Sequences, Nucleic Acid , Transcription, Genetic
18.
Cell Res ; 21(10): 1393-409, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21876557

ABSTRACT

Pluripotency, the ability of a cell to differentiate and give rise to all embryonic lineages, defines a small number of mammalian cell types such as embryonic stem (ES) cells. While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes, accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells, as well as maintaining the identity of differentiated cell types. In order to better understand the role of epigenetic mechanisms in pluripotency, we have examined the dynamics of chromatin modifications genome-wide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage. We found that chromatin modifications at promoters remain largely invariant during differentiation, except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression, suggesting a hierarchy in cell fate commitment over most differentially expressed genes. We also mapped over 50 000 potential enhancers, and observed much greater dynamics in chromatin modifications, especially H3K4me1 and H3K27ac, which correlate with expression of their potential target genes. Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs. Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic/physiology , Pluripotent Stem Cells/metabolism , Transcription, Genetic/physiology , Cell Line , Cell Lineage/physiology , Chromatin/genetics , Chromatin/metabolism , Embryonic Stem Cells/cytology , Enhancer Elements, Genetic/physiology , Genome-Wide Association Study , Humans , Pluripotent Stem Cells/cytology
19.
Nucleic Acids Res ; 39(14): 6056-68, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21493686

ABSTRACT

Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.


Subject(s)
Breast Neoplasms/genetics , Genetic Variation , Genome, Human , Cell Line, Transformed , Cell Line, Tumor , Chromosome Aberrations , Female , Humans , Lymphocytes , Middle Aged , Mutation , Point Mutation , Protein Interaction Mapping , Sequence Analysis, DNA
20.
Genome Biol ; 11(11): R114, 2010.
Article in English | MEDLINE | ID: mdl-21108794

ABSTRACT

BACKGROUND: To identify potential tumor suppressor genes, genome-wide data from exome and transcriptome sequencing were combined to search for genes with loss of heterozygosity and allele-specific expression. The analysis was conducted on the breast cancer cell line HCC1954, and a lymphoblast cell line from the same individual, HCC1954BL. RESULTS: By comparing exome sequences from the two cell lines, we identified loss of heterozygosity events at 403 genes in HCC1954 and at one gene in HCC1954BL. The combination of exome and transcriptome sequence data also revealed 86 and 50 genes with allele specific expression events in HCC1954 and HCC1954BL, which comprise 5.4% and 2.6% of genes surveyed, respectively. Many of these genes identified by loss of heterozygosity and allele-specific expression are known or putative tumor suppressor genes, such as BRCA1, MSH3 and SETX, which participate in DNA repair pathways. CONCLUSIONS: Our results demonstrate that the combined application of high throughput sequencing to exome and allele-specific transcriptome analysis can reveal genes with known tumor suppressor characteristics, and a shortlist of novel candidates for the study of tumor suppressor activities.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling , Genes, Tumor Suppressor , Alleles , Cell Line, Tumor , Female , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Loss of Heterozygosity , Polymorphism, Single Nucleotide , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...