Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
PLoS One ; 19(3): e0289232, 2024.
Article in English | MEDLINE | ID: mdl-38527002

ABSTRACT

BACKGROUND: Novel and highly sensitive point-of-care malaria diagnostic and surveillance tools that are rapid and affordable are urgently needed to support malaria control and elimination. METHODS: We demonstrated the potential of near-infrared spectroscopy (NIRS) technique to detect malaria parasites both, in vitro, using dilutions of infected red blood cells obtained from Plasmodium falciparum cultures and in vivo, in mice infected with P. berghei using blood spotted on slides and non-invasively, by simply scanning various body areas (e.g., feet, groin and ears). The spectra were analysed using machine learning to develop predictive models for infection. FINDINGS: Using NIRS spectra of in vitro cultures and machine learning algorithms, we successfully detected low densities (<10-7 parasites/µL) of P. falciparum parasites with a sensitivity of 96% (n = 1041), a specificity of 93% (n = 130) and an accuracy of 96% (n = 1171) and differentiated ring, trophozoite and schizont stages with an accuracy of 98% (n = 820). Furthermore, when the feet of mice infected with P. berghei with parasitaemia ≥3% were scanned non-invasively, the sensitivity and specificity of NIRS were 94% (n = 66) and 86% (n = 342), respectively. INTERPRETATION: These data highlights the potential of NIRS technique as rapid, non-invasive and affordable tool for surveillance of malaria cases. Further work to determine the potential of NIRS to detect malaria in symptomatic and asymptomatic malaria cases in the field is recommended including its capacity to guide current malaria elimination strategies.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Mice , Spectroscopy, Near-Infrared/methods , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria/diagnosis , Plasmodium falciparum , Machine Learning , Sensitivity and Specificity
2.
Antimicrob Agents Chemother ; 67(12): e0101423, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37971260

ABSTRACT

Plasmodium vivax infections and relapses remain a major health problem for malaria-endemic countries, deployed military personnel, and travelers. Presumptive anti-relapse therapy and radical cure using the 8-aminoquinoline drugs primaquine and tafenoquine are necessary to prevent relapses. Although it has been demonstrated that the efficacy of primaquine is associated with Cytochrome P450 2D6 (CYP2D6) activity, there is insufficient data on the role of CYP2D6 in the anti-relapse efficacy of tafenoquine. We investigated the relationship between CYP2D6 activity status and tafenoquine efficacy in preventing P. vivax relapses retrospectively using plasma samples collected from Australian Defence Force personnel deployed to Papua New Guinea and Timor-Leste who participated in clinical trials of tafenoquine during 1999-2001. The CYP2D6 gene was amplified from plasma samples and fully sequenced from 92 participant samples, comprised of relapse (n = 31) and non-relapse (n = 61) samples, revealing 14 different alleles. CYP2D6 phenotypes deduced from combinations of CYP2D6 alleles predicted that among 92 participants 67, 15, and 10 were normal, intermediate, and poor metabolizers, respectively. The deduced CYP2D6 phenotype did not correlate with the corresponding participant's plasma tafenoquine concentrations that were determined in the early 2000s by high-performance liquid chromatography or liquid chromatography-mass spectrometry. Furthermore, the deduced CYP2D6 phenotype did not associate with P. vivax relapse outcomes. Our results indicate that CYP2D6 does not affect plasma tafenoquine concentrations and the efficacy of tafenoquine in preventing P. vivax relapses in the assessed Australian Defence Force personnel.


Subject(s)
Antimalarials , Malaria, Vivax , Humans , Primaquine/therapeutic use , Plasmodium vivax/genetics , Antimalarials/therapeutic use , Cytochrome P-450 CYP2D6/genetics , Retrospective Studies , Australia , Aminoquinolines/therapeutic use , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Recurrence
3.
Clin Infect Dis ; 76(11): 1919-1927, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36795050

ABSTRACT

BACKGROUND: The long-acting 8-aminoquinoline tafenoquine may be a good candidate for mass drug administration if it exhibits sufficient blood-stage antimalarial activity at doses low enough to be tolerated by glucose 6-phosphate dehydrogenase (G6PD)-deficient individuals. METHODS: Healthy adults with normal levels of G6PD were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Different single oral doses of tafenoquine were administered on day 8. Parasitemia and concentrations of tafenoquine and the 5,6-orthoquinone metabolite in plasma/whole blood/urine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 48 ± 2. Outcomes were parasite clearance kinetics, pharmacokinetic and pharmacokinetic/pharmacodynamic (PK/PD) parameters from modelling, and dose simulations in a theoretical endemic population. RESULTS: Twelve participants were inoculated and administered 200 mg (n = 3), 300 mg (n = 4), 400 mg (n = 2), or 600 mg (n = 3) tafenoquine. The parasite clearance half-life with 400 mg or 600 mg (5.4 hours and 4.2 hours, respectively) was faster than with 200 mg or 300 mg (11.8 hours and 9.6 hours, respectively). Parasite regrowth occurred after dosing with 200 mg (3/3 participants) and 300 mg (3/4 participants) but not after 400 mg or 600 mg. Simulations using the PK/PD model predicted that 460 mg and 540 mg would clear parasitaemia by a factor of 106 and 109, respectively, in a 60-kg adult. CONCLUSIONS: Although a single dose of tafenoquine exhibits potent P. falciparum blood-stage antimalarial activity, the estimated doses to effectively clear asexual parasitemia will require prior screening to exclude G6PD deficiency. Clinical Trials Registration. Australian and New Zealand Clinical Trials Registry (ACTRN12620000995976).


Subject(s)
Antimalarials , Malaria, Falciparum , Adult , Humans , Antimalarials/adverse effects , Plasmodium falciparum , Healthy Volunteers , Parasitemia/drug therapy , Artemether/pharmacology , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Australia , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology
4.
Clin Infect Dis ; 76(3): 506-512, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35731843

ABSTRACT

BACKGROUND: Blocking the transmission of parasites from humans to mosquitoes is a key component of malaria control. Tafenoquine exhibits activity against all stages of the malaria parasite and may have utility as a transmission blocking agent. We aimed to characterize the transmission blocking activity of low-dose tafenoquine. METHODS: Healthy adults were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Piperaquine was administered on days 9 and 11 to clear asexual parasitemia while allowing gametocyte development. A single 50-mg oral dose of tafenoquine was administered on day 25. Transmission was determined by enriched membrane feeding assays predose and at 1, 4, and 7 days postdose. Artemether-lumefantrine was administered following the final assay. Outcomes were the reduction in mosquito infection and gametocytemia after tafenoquine and safety parameters. RESULTS: Six participants were enrolled, and all were infective to mosquitoes before tafenoquine, with a median 86% (range, 22-98) of mosquitoes positive for oocysts and 57% (range, 4-92) positive for sporozoites. By day 4 after tafenoquine, the oocyst and sporozoite positivity rate had reduced by a median 35% (interquartile range [IQR]: 16-46) and 52% (IQR: 40-62), respectively, and by day 7, 81% (IQR 36-92) and 77% (IQR 52-98), respectively. The decline in gametocyte density after tafenoquine was not significant. No significant participant safety concerns were identified. CONCLUSIONS: Low-dose tafenoquine (50 mg) reduces P. falciparum transmission to mosquitoes, with a delay in effect.


Subject(s)
Anopheles , Antimalarials , Malaria, Falciparum , Malaria , Adult , Animals , Humans , Plasmodium falciparum , Antimalarials/adverse effects , Healthy Volunteers , Artemether/pharmacology , Artemether, Lumefantrine Drug Combination , Malaria, Falciparum/prevention & control , Sporozoites , Anopheles/parasitology
5.
Molecules ; 27(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36500278

ABSTRACT

Analytical methods for the quantification of the new 8-aminoquinoline antimalarial tafenoquine (TQ) in human blood, plasma and urine, and the 5,6-orthoquinone tafenoquine metabolite (5,6-OQTQ) in human plasma and urine have been validated. The procedure involved acetonitrile extraction of samples followed by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Chromatography was performed using a Waters Atlantis T3 column with a gradient of 0.1% formic acid and acetonitrile at a flow rate of 0.5 mL per minute for blood and plasma. Urine analysis was the same but with methanol containing 0.1% formic acid replacing acetonitrile mobile phase. The calibration range for TQ and 5,6-OQTQ in plasma was 1 to 1200 ng/mL, and in urine was 10 to 1000 ng/mL. Blood calibration range for TQ was 1 to 1200 ng/mL. Blood could not be validated for 5,6-OQTQ due to significant signal suppression. The inter-assay precision (coefficient of variation %) was 9.9% for TQ at 1 ng/mL in blood (n = 14) and 8.2% for TQ and 7.1% for 5,6-OQTQ at 1 ng/mL in plasma (n = 14). For urine, the inter-assay precision was 8.2% for TQ and 6.4% for 5,6-OQTQ at 10 ng/mL (n = 14). TQ and 5,6-OQTQ are stable in blood, plasma and urine for at least three months at both -80 °C and -20 °C. Once validated, the analytical methods were applied to samples collected from healthy volunteers who were experimentally infected with Plasmodium falciparum to evaluate the blood stage antimalarial activity of TQ and to determine the therapeutic dose estimates for TQ, the full details of which will be published elsewhere. In this study, the measurement of TQ and 5,6-OQTQ concentrations in samples from one of the four cohorts of participants is reported. Interestingly, TQ urine concentrations were proportional to parasite recrudescence times post dosing To our knowledge, this is the first description of a fully validated method for the measurement of TQ and 5,6-OQTQ quantification in urine.


Subject(s)
Antimalarials , Tandem Mass Spectrometry , Humans , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Formates/analysis , Plasma/chemistry , Antimalarials/analysis , Reproducibility of Results
6.
Malar J ; 21(1): 40, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135536

ABSTRACT

BACKGROUND: Malaria elimination by 2030 is an aim of many countries in the Greater Mekong Sub-region, including Vietnam. However, to achieve this goal and accelerate towards malaria elimination, countries need to determine the extent and prevalence of asymptomatic malaria as a potential reservoir for malaria transmission and the intensity of malaria transmission. The purpose of this study was to determine the prevalence of asymptomatic malaria and seropositivity rate in several districts of Gia Lai province in the Central Highlands of Vietnam. METHODS: A cross-sectional survey of asymptomatic malaria and serological testing was conducted in 3283 people living at 14 communes across seven districts in Gia Lai province in December 2016 to January 2017. Finger prick capillary blood samples were tested for malaria using rapid diagnostic testing and polymerase chain reaction (PCR), as well as detecting antibodies against 3 Plasmodium falciparum and 4 Plasmodium vivax antigens by indirect enzyme-linked immunosorbent assay (ELISA). Age-seroprevalence curves were fitted using reverse catalytic models with maximum likelihood. RESULTS: The study population was predominantly male (65.9%, 2165/3283), adults (88.7%, 2911/3283) and of a minority ethnicity (72.2%, 2371/3283), with most participants being farmers and outdoor government workers (90.2%, 2960/3283). Using a small volume of blood (≈ 10 µL) the PCR assay revealed that 1.74% (57/3283) of the participants had asymptomatic malaria (P. falciparum 1.07%, P. vivax 0.40%, Plasmodium malariae 0.15% and mixed infections 0.12%). In contrast, the annual malaria prevalence rates for clinical malaria in the communities where the participants lived were 0.12% (108/90,395) in 2016 and 0.22% (201/93,184) in 2017. Seropositivity for at least one P. falciparum or one P. vivax antigen was 38.5% (1257/3262) and 31.1% (1022/3282), respectively. Age-dependent trends in the proportion of seropositive individuals in five of the districts discriminated the three districts with sustained low malaria prevalence from the two districts with higher transmission. CONCLUSIONS: Asymptomatic Plasmodium carriers were found to be substantially more prevalent than clinical cases in seven districts of Gia Lai province, and a third of the population had serological evidence of previous malaria exposure. The findings add knowledge on the extent of asymptomatic malaria and transmission for developing malaria elimination strategies for Vietnam.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Adult , Asymptomatic Infections/epidemiology , Cross-Sectional Studies , Humans , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Male , Plasmodium falciparum , Plasmodium vivax , Prevalence , Seroepidemiologic Studies , Vietnam/epidemiology
7.
Clin Infect Dis ; 75(8): 1379-1388, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35180298

ABSTRACT

BACKGROUND: Acetaminophen inhibits cell-free hemoglobin-induced lipid peroxidation and improves renal function in severe falciparum malaria but has not been evaluated in other infections with prominent hemolysis, including Plasmodium knowlesi malaria. METHODS: PACKNOW was an open-label, randomized, controlled trial of acetaminophen (500 mg or 1000 mg every 6 hours for 72 hours) vs no acetaminophen in Malaysian patients aged ≥5 years with knowlesi malaria of any severity. The primary end point was change in creatinine at 72 hours. Secondary end points included longitudinal changes in creatinine in patients with severe malaria or acute kidney injury (AKI), stratified by hemolysis. RESULTS: During 2016-2018, 396 patients (aged 12-96 years) were randomized to acetaminophen (n = 199) or no acetaminophen (n = 197). Overall, creatinine fell by a mean (standard deviation) 14.9% (18.1) in the acetaminophen arm vs 14.6% (16.0) in the control arm (P = .81). In severe disease, creatinine fell by 31.0% (26.5) in the acetaminophen arm vs 20.4% (21.5) in the control arm (P = .12), and in those with hemolysis by 35.8% (26.7) and 19% (16.6), respectively (P = .07). No difference was seen overall in patients with AKI; however, in those with AKI and hemolysis, creatinine fell by 34.5% (20.7) in the acetaminophen arm vs 25.9% (15.8) in the control arm (P = .041). Mixed-effects modeling demonstrated a benefit of acetaminophen at 72 hours (P = .041) and 1 week (P = .002) in patients with severe malaria and with AKI and hemolysis (P = .027 and P = .002, respectively). CONCLUSIONS: Acetaminophen did not improve creatinine among the entire cohort but may improve renal function in patients with severe knowlesi malaria and in those with AKI and hemolysis. CLINICAL TRIALS REGISTRATION: NCT03056391.


Subject(s)
Acute Kidney Injury , Malaria , Plasmodium knowlesi , Acetaminophen/therapeutic use , Acute Kidney Injury/drug therapy , Creatinine , Hemoglobins/therapeutic use , Hemolysis , Humans , Kidney/physiology , Malaria/complications , Malaria/drug therapy , Malaysia
8.
Malar J ; 20(1): 403, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34656112

ABSTRACT

BACKGROUND: In 2018, the National Malaria Control Programme in Vietnam switched from prioritizing malaria control to elimination. However, with the ongoing elimination programme, there are still areas where residual malaria transmission persists, including the central highlands. This entomological survey was conducted to evaluate Anopheles diversity and host-seeking activity of Anopheles vectors in two communes with very low malaria transmission in Gia Lai Province. METHODS: Anopheles species were collected in Ia DReh commune and Ia KDam commune, Gia Lai Province in the central highlands of Vietnam. Collections were conducted using human-baited double net trap, light trap and manual aspiration collections around cattle sheds, in the dry and rainy season. Mosquito specimens were identified morphologically, and members of species complexes were distinguished molecularly. Mosquito night-feeding patterns were investigated during the dry and rainy seasons. RESULTS: Overall, 18,835 specimens including 19 taxa were collected in Ia KDam and Ia DReh communes. These included the primary malaria vectors, Anopheles dirus and Anopheles minimus, and other secondary vector species. Anopheles dirus was observed to be an anthropophilic species, whereas An. minimus and a number of secondary vectors were observed to be zoophilic. Anopheles vagus was the dominant species, followed by Anopheles sinensis and Anopheles peditaeniatus. The majority of specimens were collected in the rainy season due to the relatively large number of An. vagus, while An. peditaeniatus, An. dirus, Anopheles kochi, Anopheles monstrosus and Anopheles tessellatus were collected in greater numbers during the dry season. The peak of host-seeking activity for An. dirus, An. sinensis, and An. vagus was between 18.00 and 19.00 h. CONCLUSION: This study provided information on the diversity, seasonal prevalence and behaviour of Anopheles at the study sites. Identifying the diverse mosquito fauna in the central highlands of Vietnam allows species-specific control measures to be implemented by the National Programme to reduce malaria in areas of very low malaria transmission. The peak Anopheles host-seeking activity observed in this study was between 18.00 and 23.00 h, which highlights the need to better characterize Anopheles behaviour in this region of Vietnam to inform on vector control strategies.


Subject(s)
Anopheles/physiology , Malaria/transmission , Mosquito Vectors/physiology , Animals , Anopheles/classification , Anopheles/parasitology , Farms , Forests , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors/classification , Mosquito Vectors/parasitology , Polymerase Chain Reaction/methods , Seasons , Vietnam/epidemiology
9.
PLoS One ; 16(10): e0258580, 2021.
Article in English | MEDLINE | ID: mdl-34669697

ABSTRACT

Asymptomatic parasite carriers represent a "silent" infective reservoir for malaria transmission and contributes to malaria persistence. However, limited data are available on asymptomatic malaria in Vietnam. Between November 2018 and March 2019, we conducted a malaria epidemiological survey of asymptomatic people (children ≥ 10 years old and adults ≥18 years old, n = 2,809) residing in three communes in Tuy Duc district, Dak Nong province in the Central Highlands of Vietnam. Based on the national stratification of malaria risk, Dak Buk So, Dak Ngo and Quang Truc communes were classified by the National Malaria Control Programme as low, moderate and high malaria endemic areas, respectively. Using participants' finger prick blood samples, malaria parasites were detected by one-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The median age (Interquartile Range) for adults and children were 35 years (26-50) and 12 years (11-14), respectively. The prevalence of asymptomatic malaria was 1.7% (22/1,328), 3.5% (31/890) and 12.2% (72/591) for participants from Dak Buk So, Dak Ngo and Quang Truc, respectively. The prevalence of asymptomatic malaria was lower in children compared to adults: 2.6% (9/352) versus 4.7% (116/2,457) (Odds Ratio 0.53, 95% Confidence Interval 0.28 to1.02). Ownership of long-lasting insecticide-treated bed nets and hammocks was 97.1%, 99.0% and 94.7% for participants in Dak Buk So, Dak Ngo and Quang Truc, respectively, however, only 66.0%, 57.3% and 42.8% of the participants reported using bed nets every night. Of the several risk factors examined, going to the forest two weeks prior to enrolment into the study and sleeping in the forest had a significant association with participants being infected with asymptomatic malaria in Quang Truc, but not in the other two communes. Knowledge of the prevalence and distribution of asymptomatic malaria will help design and evaluate future intervention strategies for malaria elimination in Vietnam.


Subject(s)
Malaria, Falciparum , Adolescent , Adult , Child , Child, Preschool , Humans , Male , Young Adult
10.
Antimicrob Agents Chemother ; 65(12): e0027621, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34570647

ABSTRACT

The rise in Plasmodium falciparum resistance to dihydroartemisinin-piperaquine in Vietnam justifies the need to evaluate alternative artemisinin-based combination therapies. Between July 2018 and October 2019, a single-arm trial of pyronaridine-artesunate (Pyramax, PA) was conducted in Dak Nong province, Vietnam. PA (3-day course) was administered to adults and children infected with P. falciparum. PA was well tolerated by the participants. The proportion of patients with Day 42 PCR-corrected adequate clinical and parasitological response was 95.2% (95% confidence interval [CI], 82.3 to 98.8, n = 40/42) for treating falciparum malaria. The median parasite clearance half-life was 6.7 h (range, 2.6 to 11.9) and the median parasite clearance time was 72 h (range, 12 to 132) with 44.9% (22/49) of patients having positive blood films at 72 h. The two patients that recrudesced had comparable Day 7 blood pyronaridine concentrations (39.5 and 39.0 ng/ml) to the 40 patients who did not recrudesce (median 43.4 ng/ml, 95% CI, 35.1 to 54.9). Ring-stage and piperaquine survival assays revealed that of the 29 P. falciparum isolates collected from the patients before PA treatment, 22 (75.9%) had reduced susceptibility to artemisinins and 17 (58.6%) were resistant to piperaquine. Genotyping confirmed that 92.0% (46/50) of falciparum patients were infected with parasites bearing the Pfkelch13 C580Y mutation associated with artemisinin resistance. Of these, 56.0% (28/50) of the isolates also had multiple copies of the plasmepsin 2/3 genes responsible for piperaquine resistance. Overall, PA was effective in treating P. falciparum in the Central Highlands of Vietnam. (This study has been registered at AustralianClinicalTrials.gov.au under trial ID ACTRN12618001429246.).


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Quinolines , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Artesunate , Drug Combinations , Humans , Malaria, Falciparum/drug therapy , Naphthyridines , Plasmodium falciparum/genetics , Quinolines/therapeutic use , Vietnam
11.
Antimicrob Agents Chemother ; 65(11): e0031121, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34460304

ABSTRACT

Novel bis-1,2,4-triazine compounds with potent in vitro activity against Plasmodium falciparum parasites were recently identified. The bis-1,2,4-triazines represent a unique antimalarial pharmacophore and are proposed to act by a novel but as-yet-unknown mechanism of action. This study investigated the activity of the bis-1,2,4-triazine MIPS-0004373 across the mammalian life cycle stages of the parasite and profiled the kinetics of activity against blood and transmission stage parasites in vitro and in vivo. MIPS-0004373 demonstrated rapid and potent activity against P. falciparum, with excellent in vitro activity against all asexual blood stages. Prolonged in vitro drug exposure failed to generate stable resistance de novo, suggesting a low propensity for the emergence of resistance. Excellent activity was observed against sexually committed ring stage parasites, but activity against mature gametocytes was limited to inhibiting male gametogenesis. Assessment of liver stage activity demonstrated good activity in an in vitro P. berghei model but no activity against Plasmodium cynomolgi hypnozoites or liver schizonts. The bis-1,2,4-triazine MIPS-0004373 efficiently cleared an established P. berghei infection in vivo, with efficacy similar to that of artesunate and chloroquine and a recrudescence profile comparable to that of chloroquine. This study demonstrates the suitability of bis-1,2,4-triazines for further development toward a novel treatment for acute malaria.


Subject(s)
Malaria , Parasites , Animals , Malaria/drug therapy , Male , Plasmodium berghei , Triazines/pharmacology
12.
PLoS Negl Trop Dis ; 15(4): e0009218, 2021 04.
Article in English | MEDLINE | ID: mdl-33886567

ABSTRACT

CONCLUSIONS/SIGNIFICANCE: The potential of RS as a surveillance tool for malaria and arbovirus vectors and MIRS for the diagnosis and surveillance of arboviruses is yet to be assessed. NIRS capacity as a surveillance tool for malaria and arbovirus vectors should be validated under field conditions, and its potential as a diagnostic tool for malaria and arboviruses needs to be evaluated. It is recommended that all 3 techniques evaluated simultaneously using multiple machine learning techniques in multiple epidemiological settings to determine the most accurate technique for each application. Prior to their field application, a standardised protocol for spectra collection and data analysis should be developed. This will harmonise their application in multiple field settings allowing easy and faster integration into existing disease control platforms. Ultimately, development of rapid and cost-effective point-of-care diagnostic tools for malaria and arboviruses based on spectroscopy techniques may help combat current and future outbreaks of these infectious diseases.


Subject(s)
Arbovirus Infections/diagnosis , Malaria/diagnosis , Mosquito Vectors/parasitology , Mosquito Vectors/virology , Spectrum Analysis , Aedes/parasitology , Aedes/virology , Animals , Arbovirus Infections/epidemiology , Cost-Benefit Analysis , Epidemiological Monitoring , Humans , Malaria/epidemiology , Point-of-Care Systems
13.
Eur J Med Chem ; 219: 113416, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33887682

ABSTRACT

Parasites of the Plasmodium genus are unable to produce purine nucleotides de novo and depend completely on the salvage pathway. This fact makes plasmodial hypoxanthine-guanine-(xanthine) phosphoribosyltransferase [HG(X)PRT] a valuable target for development of antimalarial agents. A series of nucleotide analogues was designed, synthesized and evaluated as potential inhibitors of Plasmodium falciparum HGXPRT, P. vivax HGPRT and human HGPRT. These novel nucleoside phosphonates have a pyrrolidine, piperidine or piperazine ring incorporated into the linker connecting the purine base to a phosphonate group(s) and exhibited a broad range of Ki values between 0.15 and 72 µM. The corresponding phosphoramidate prodrugs, able to cross cell membranes, have been synthesized and evaluated in a P. falciparum infected human erythrocyte assay. Of the eight prodrugs evaluated seven exhibited in vitro antimalarial activity with IC50 values within the range of 2.5-12.1 µM. The bis-phosphoramidate prodrug 13a with a mean (SD) IC50 of 2.5 ± 0.7 µM against the chloroquine-resistant P. falciparum W2 strain exhibited low cytotoxicity in the human hepatocellular liver carcinoma (HepG2) and normal human dermal fibroblasts (NHDF) cell lines at a concentration of 100 µM suggesting good selectivity for further structure-activity relationship investigations.


Subject(s)
Antimalarials/chemical synthesis , Enzyme Inhibitors/chemistry , Nucleotides/chemistry , Pentosyltransferases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Antimalarials/metabolism , Antimalarials/pharmacology , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Drug Resistance/drug effects , Enzyme Inhibitors/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Nucleotides/metabolism , Pentosyltransferases/metabolism , Piperazine/chemistry , Piperidines/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium vivax/enzymology , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/metabolism , Prodrugs/pharmacology , Protozoan Proteins/metabolism , Pyrrolidines/chemistry , Structure-Activity Relationship
14.
J Med Chem ; 64(7): 4150-4162, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33759519

ABSTRACT

Novel 3,3'-disubstituted-5,5'-bi(1,2,4-triazine) compounds with potent in vitro activity against Plasmodium falciparum parasites were recently discovered. To improve the pharmacokinetic properties of the triazine derivatives, a new structure-activity relationship (SAR) investigation was initiated with a focus on enhancing the metabolic stability of lead compounds. These efforts led to the identification of second-generation highly potent antimalarial bis-triazines, exemplified by triazine 23, which exhibited significantly improved in vitro metabolic stability (8 and 42 µL/min/mg protein in human and mouse liver microsomes). The disubstituted triazine dimer 23 was also observed to suppress parasitemia in the Peters 4-day test with a mean ED50 value of 1.85 mg/kg/day and exhibited a fast-killing profile, revealing a new class of orally available antimalarial compounds of considerable interest.


Subject(s)
Antimalarials/therapeutic use , Malaria/drug therapy , Triazines/therapeutic use , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Caco-2 Cells , Female , Humans , Male , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/drug effects , Molecular Structure , Parasitic Sensitivity Tests , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Rats, Sprague-Dawley , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/pharmacokinetics
15.
Article in English | MEDLINE | ID: mdl-33526483

ABSTRACT

Plasmodium falciparum resistance to dihydroartemisinin-piperaquine has spread through the Greater Mekong Subregion to southwestern Vietnam. In 2018 to 2019, we collected 127 P. falciparum isolates from Dak Nong (36), Dak Lak (55), Gia Lai (13), and Kon Tum (23) provinces in Vietnam's Central Highlands and found parasites bearing the Pfkelch13 C580Y mutation and multiple plasmepsin 2/3 genes (mean prevalence, 17.9%; range, 4.3% to 27.8%), conferring resistance to dihydroartemisinin-piperaquine. This information is important for drug policy decisions in Vietnam.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Quinolines , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Protozoan Proteins/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Vietnam/epidemiology
16.
PLoS Med ; 17(11): e1003393, 2020 11.
Article in English | MEDLINE | ID: mdl-33211712

ABSTRACT

BACKGROUND: There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. METHODS AND FINDINGS: A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0-29.0 years; range = 0-80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9-33.4) after AL, 14.1% (95% CI 10.8-18.3) after AA, 7.4% (95% CI 6.7-8.1) after AM, and 4.5% (95% CI 3.9-5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6-43.3), 42.4% (95% CI 34.7-51.2), 22.8% (95% CI 21.2-24.4), and 12.8% (95% CI 11.4-14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0-19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6-8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4-3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0-1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4-2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. CONCLUSIONS: In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably between geographical areas.


Subject(s)
Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Vivax/drug therapy , Plasmodium vivax/pathogenicity , Adolescent , Adult , Aged , Aged, 80 and over , Artemisinins/therapeutic use , Child , Child, Preschool , Female , Humans , Infant , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Male , Middle Aged , Parasitemia/drug therapy , Plasmodium vivax/drug effects , Young Adult
17.
Article in English | MEDLINE | ID: mdl-31907186

ABSTRACT

High rates of artemisinin-based combination therapy (ACT) failures in the treatment of Plasmodium falciparum malaria in Southeast Asia have led to triple-drug strategies to extend the useful life of ACTs. In this study, we determined whether methylene blue [MB; 3,7-bis(dimethylamino)phenothiazin-5-ium chloride hydrate] alters the pharmacokinetics of artesunate-amodiaquine (ASAQ) and enhances the ex vivo antimalarial activity of ASAQ. In an open-label, randomized crossover design, a single oral dose of ASAQ (200 mg AS/540 mg AQ) alone or with MB (325 mg) was administered to 15 healthy Vietnamese volunteers. Serial blood samples were collected up to 28 days after dosing. Pharmacokinetic properties of the drugs were determined by noncompartmental analysis. After drug administration, plasma samples from seven participants were assessed for ex vivo antimalarial activity against the artemisinin-sensitive MRA1239 and the artemisinin-resistant MRA1240 P. falciparum lines, in vitro MB significantly increased the mean area under the curve of the active metabolite of AS, dihydroartemisinin (1,246 ± 473 versus 917 ± 405 ng·h/ml, P = 0.009) but did not alter the pharmacokinetics of AQ, AS, or desethylamodiaquine. Comparing the antimalarial activities of the plasma samples from the participants collected up to 48 h after ASAQ plus MB (ASAQ+MB) and ASAQ dosing against the MRA1239 and MRA1240 lines, MB significantly enhanced the blood schizontocidal activity of ASAQ by 2.0-fold and 1.9-fold, respectively. The ring-stage survival assay also confirmed that MB enhanced the ex vivo antimalarial activity of ASAQ against MRA1240 by 2.9-fold to 3.8-fold, suggesting that the triple-drug combination has the potential to treat artemisinin-resistant malaria and for malaria elimination. (This study has been registered in the Australian New Zealand Clinical Trials Registry [https://anzctr.org.au/] under registration number ACTRN12612001298808.).


Subject(s)
Amodiaquine/pharmacokinetics , Antimalarials/pharmacokinetics , Artemisinins/pharmacokinetics , Methylene Blue/pharmacokinetics , Adult , Artesunate/pharmacokinetics , Cross-Over Studies , Drug Combinations , Female , Healthy Volunteers , Humans , Male , Young Adult
18.
Mol Cell Proteomics ; 19(2): 308-325, 2020 02.
Article in English | MEDLINE | ID: mdl-31836637

ABSTRACT

The increasing incidence of antimalarial drug resistance to the first-line artemisinin combination therapies underpins an urgent need for new antimalarial drugs, ideally with a novel mode of action. The recently developed 2-aminomethylphenol, JPC-3210, (MMV 892646) is an erythrocytic schizonticide with potent in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum lines, low cytotoxicity, potent in vivo efficacy against murine malaria, and favorable preclinical pharmacokinetics including a lengthy plasma elimination half-life. To investigate the impact of JPC-3210 on biochemical pathways within P. falciparum-infected red blood cells, we have applied a "multi-omics" workflow based on high resolution orbitrap mass spectrometry combined with biochemical approaches. Metabolomics, peptidomics and hemoglobin fractionation analyses revealed a perturbation in hemoglobin metabolism following JPC-3210 exposure. The metabolomics data demonstrated a specific depletion of short hemoglobin-derived peptides, peptidomics analysis revealed a depletion of longer hemoglobin-derived peptides, and the hemoglobin fractionation assay demonstrated decreases in hemoglobin, heme and hemozoin levels. To further elucidate the mechanism responsible for inhibition of hemoglobin metabolism, we used in vitro ß-hematin polymerization assays and showed JPC-3210 to be an intermediate inhibitor of ß-hematin polymerization, about 10-fold less potent then the quinoline antimalarials, such as chloroquine and mefloquine. Further, quantitative proteomics analysis showed that JPC-3210 treatment results in a distinct proteomic signature compared with other known antimalarials. While JPC-3210 clustered closely with mefloquine in the metabolomics and proteomics analyses, a key differentiating signature for JPC-3210 was the significant enrichment of parasite proteins involved in regulation of translation. These studies revealed that the mode of action for JPC-3210 involves inhibition of the hemoglobin digestion pathway and elevation of regulators of protein translation. Importantly, JPC-3210 demonstrated rapid parasite killing kinetics compared with other quinolones, suggesting that JPC-3210 warrants further investigation as a potentially long acting partner drug for malaria treatment.


Subject(s)
Antimalarials/pharmacology , Phenols/pharmacology , Plasmodium falciparum/drug effects , Hemoglobins/metabolism , Metabolomics , Peptides/metabolism , Plasmodium falciparum/metabolism , Proteomics , Protozoan Proteins/metabolism
19.
Article in English | MEDLINE | ID: mdl-31843994

ABSTRACT

Nonimmune Aotus monkeys infected with Plasmodium falciparum and Plasmodium vivax were cured of their infections when treated with a single oral dose of 5 mg/kg and 10 mg/kg of the 2-aminomethylphenol, JPC-3210, respectively. Corresponding mean blood elimination half-lives of JPC-3210 were lengthy at 19.1 days and 20.5 days, respectively. This in vivo potency and lengthy half-life supports the further development of JPC-3210 as a promising, long-acting blood schizontocidal antimalarial for malaria treatment and prevention.


Subject(s)
Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Malaria/drug therapy , Animals , Antimalarials , Aotidae , Female , Humans , Malaria, Falciparum/prevention & control , Malaria, Vivax/prevention & control , Male , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Plasmodium vivax/drug effects , Plasmodium vivax/pathogenicity
20.
Eur J Med Chem ; 183: 111667, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31536893

ABSTRACT

Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) is a recognized target for antimalarial chemotherapeutics. It synthesises all of the 6-oxopurine nucleoside monophosphates, IMP, GMP and XMP needed by the malarial parasite, Plasmodium falciparum (Pf). PfHGXPRT is also indirectly responsible for the synthesis of the adenosine monophosphate, AMP. The acyclic nucleoside phosphonates (ANPs) are a class of PfHGXPRT inhibitors. Prodrugs of these compounds are able to arrest the growth of Pf in cell culture. In the search for new inhibitors of PfHGXPRT, a series of sulfur containing ANPs (thia-ANPs) has been designed and synthesized. These compounds are based on the structure of 2-(phosphonoethoxy)ethylguanine (PEEG) and PEEHx which consist of a purine base (i.e. guanine or hypoxanthine) linked to a phosphonate group by five atoms i.e. four carbons and one oxygen. Here, PEEG and PEEHx were modified by substituting a sulfide, sulfoxide or a sulfone bridge for the oxygen atom in the linker. The effect of these substitutions on the Ki values for human HGPRT and PfHGXPRT was investigated and showed that most of the thia-ANPs distinctively favour PfHGXPRT. For example, the thia-analogue of PEEHx has a Ki value of 0.2 µM for PfHGXPRT, a value 25-fold lower than for the human counterpart. Prodrugs of these compounds have IC50 values in the 4-6 µM range in antimalarial cell-based assays, making them attractive compounds for further development as antimalarial drug leads.


Subject(s)
Antimalarials/chemical synthesis , Nucleosides/chemical synthesis , Organophosphonates/chemical synthesis , Pentosyltransferases/antagonists & inhibitors , Plasmodium falciparum/enzymology , Sulfides/chemistry , Sulfones/chemistry , Sulfoxides/chemistry , Antimalarials/pharmacology , Humans , Molecular Structure , Nucleosides/pharmacology , Organophosphonates/pharmacology , Oxidation-Reduction , Plasmodium falciparum/drug effects , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...