Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 22(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786618

ABSTRACT

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Subject(s)
Allelopathy , Diatoms , Oxylipins , Oxylipins/metabolism , Animals , Aquatic Organisms , Zooplankton
2.
Ann Rev Mar Sci ; 15: 485-508, 2023 01 16.
Article in English | MEDLINE | ID: mdl-35878678

ABSTRACT

Lipids are structurally diverse biomolecules that serve multiple roles in cells. As such, they are used as biomarkers in the modern ocean and as paleoproxies to explore the geological past. Here, I review lipid geochemistry, biosynthesis, and compartmentalization; the varied uses of lipids as biomarkers; and the evolution of analytical techniques used to measure and characterize lipids. Advancements in high-resolution accurate-mass mass spectrometry have revolutionized the lipidomic and metabolomic fields, both of which are quickly being integrated into marine meta-omic studies. Lipidomics allows us to analyze tens of thousands of features, providing an open analytical window and the ability to quantify unknown compounds that can be structurally elucidated later. However, lipidome annotation is not a trivial matter and represents one of the biggest challenges for oceanographers, owing in part to the lack of marine lipids in current in silico databases and data repositories. A case study reveals the gaps in our knowledge and open opportunities to answer fundamental questions about molecular-level control of chemical reactions and global-scale patterns in the lipidscape.


Subject(s)
Lipidomics , Lipids , Lipids/chemistry , Biomarkers/chemistry
3.
Prog Oceanogr ; 218: 1-15, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38269259

ABSTRACT

Achieving gender equity is a long-standing and ubiquitous challenge in marine science. Creating equitable experiences for all genders in marine science requires recognizing scientists' intersectional identities, and how this leads to unique lived experiences of privilege and marginalization. One approach to increase equitable experiences for women in marine science is to create affinity groups where women can learn from each other, share their experiences, and provide support and mentorship. The Society for Women in Marine Science (SWMS) is one such organization, founded to amplify the work of early career women in marine science and create community, through events such as full-day symposium events. This study investigates the experiences of symposium attendees for four events held from 2018 through 2020, as reported in pre- and post-symposium surveys. We used quantitative analysis of the open-ended survey questions to examine the demographics of attendees and their fields of study. Qualitative thematic analysis identified the most effective aspects of the symposia, areas of logistical and content improvement for future symposia, and emphasized the unique challenges women in marine science experience. The majority of symposium attendees were white graduate students. Nearly all attendees identified as women, with a small number of men and non-binary individuals. Symposia attendees enjoyed opportunities for professional development and interactions with colleagues across career stages. We present recommendations for continuing to foster a sense of belonging in marine science and STEM more broadly, both specific to SWMS and transferable actions that can be applied for other affinity groups. These suggestions include empathetic event logistics, continual democratic evaluation, identity reflexivity among group leaders, and professional development activities targeted towards the unique needs of the affinity group. The positive responses received from SWMS's adaptive integration of survey results into symposia demonstrate that incorporating these recommendations and findings will help create an inclusive wave in marine science.

4.
Environ Microbiol ; 22(2): 629-645, 2020 02.
Article in English | MEDLINE | ID: mdl-31782207

ABSTRACT

Diatom blooms are important features of productive marine ecosystems and are known to support higher trophic levels. However, when stressed or wounded, diatoms can produce oxylipin molecules known to inhibit the reproduction and development of copepods and decrease microzooplankton growth rates. Using oxylipin chemical treatments, lipidomic analysis and functional genomic approaches, we provide evidence that nitric oxide (NO) and oxylipin signalling pathways in diatoms respond to protist grazers, resulting in increased defence fitness and survival. Exposure of the diatom Phaeodactylum tricornutum to the dinoflagellate Oxyrrhis marina resulted in NO production by P. tricornutum and pronounced change in its dissolved oxylipin profile. Experimentally elevating levels of NO also resulted in increased oxylipin production, and lower overall grazing rates. Furthermore, O. marina preferentially grazed on P. tricornutum prey with lower levels of NO, suggesting that this molecule and its effect on oxylipin pathways play a key role in prey selection. Exposure of O. marina grazing on P. tricornutum to exogenous oxylipins also decreased grazing rates, which is consistent with a grazing deterrence role for these molecules. These results suggest that NO and oxylipin production help to structure diatom communities, in part by modulating interactions with microzooplankton predators.


Subject(s)
Diatoms/metabolism , Dinoflagellida/metabolism , Feeding Behavior/physiology , Nitric Oxide/metabolism , Oxylipins/metabolism , Animals , Copepoda/growth & development , Ecosystem , Oxylipins/pharmacology , Reproduction/physiology , Signal Transduction
5.
Nat Microbiol ; 4(11): 1790-1797, 2019 11.
Article in English | MEDLINE | ID: mdl-31308524

ABSTRACT

Diatoms are among the most globally distributed and ecologically successful organisms in the modern ocean, contributing upwards of 40% of total marine primary productivity1,2. By converting dissolved silicon into biogenic silica, and photosynthetically fixing carbon dioxide into particulate organic carbon, diatoms effectively couple the silicon (Si) and carbon cycles and ballast substantial vertical flux of carbon out of the euphotic zone into the mesopelagic and deep ocean3-5. Viruses are key players in ocean biogeochemical cycles6,7, yet little is known about how viral infection specifically impacts diatom populations. Here, we show that Si limitation facilitates virus infection and mortality in diatoms in the highly productive coastal waters of the California Current Ecosystem. Using metatranscriptomic analysis of cell-associated diatom viruses and targeted quantification of extracellular viruses, we found a link between Si stress and the early, active and lytic stages of viral infection. This relationship was also observed in cultures of the bloom-forming diatom Chaetoceros tenuissimus, where Si stress accelerated virus-induced mortality. Together, these findings contextualize viruses within the ecophysiological framework of Si availability and diatom-mediated biogeochemical cycling.


Subject(s)
Diatoms/growth & development , Gene Expression Profiling/methods , Silicon/metabolism , Viruses/pathogenicity , Biodegradation, Environmental , California , Carbon/metabolism , Carbon Dioxide , Diatoms/metabolism , Diatoms/virology , Metagenomics , Sequence Analysis, RNA , Viruses/classification , Viruses/genetics
6.
Proc Natl Acad Sci U S A ; 116(24): 11824-11832, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31127042

ABSTRACT

Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes.


Subject(s)
Aquatic Organisms/metabolism , Aquatic Organisms/microbiology , Bacteria/growth & development , Particulate Matter/metabolism , Seawater/microbiology , Animals , Bacteria/metabolism , Carbon/metabolism , Carbon Cycle/physiology , Eukaryota/metabolism , Oceans and Seas
7.
Anal Chem ; 88(14): 7154-62, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27322848

ABSTRACT

Discovery and identification of molecular biomarkers in large LC/MS data sets requires significant automation without loss of accuracy in the compound screening and annotation process. Here, we describe a lipidomics workflow and open-source software package for high-throughput annotation and putative identification of lipid, oxidized lipid, and oxylipin biomarkers in high-mass-accuracy HPLC-MS data. Lipid and oxylipin biomarker screening through adduct hierarchy sequences, or LOBSTAHS, uses orthogonal screening criteria based on adduct ion formation patterns and other properties to identify thousands of compounds while providing the user with a confidence score for each assignment. Assignments are made from one of two customizable databases; the default databases contain 14 068 unique entries. To demonstrate the software's functionality, we screened more than 340 000 mass spectral features from an experiment in which hydrogen peroxide was used to induce oxidative stress in the marine diatom Phaeodactylum tricornutum. LOBSTAHS putatively identified 1969 unique parent compounds in 21 869 features that survived the multistage screening process. While P. tricornutum maintained more than 92% of its core lipidome under oxidative stress, patterns in biomarker distribution and abundance indicated remodeling was both subtle and pervasive. Treatment with 150 µM H2O2 promoted statistically significant carbon-chain elongation across lipid classes, with the strongest elongation accompanying oxidation in moieties of monogalactosyldiacylglycerol, a lipid typically localized to the chloroplast. Oxidative stress also induced a pronounced reallocation of lipidome peak area to triacylglycerols. LOBSTAHS can be used with environmental or experimental data from a variety of systems and is freely available at https://github.com/vanmooylipidomics/LOBSTAHS .


Subject(s)
Biomarkers/analysis , High-Throughput Screening Assays/methods , Lipids/analysis , Oxylipins/analysis , Biomarkers/chemistry , Biomarkers/metabolism , Chromatography, Liquid , Databases, Chemical/statistics & numerical data , Diatoms/chemistry , Hydrogen Peroxide/adverse effects , Isomerism , Lipid Metabolism , Lipids/chemistry , Mass Spectrometry , Oxidative Stress/drug effects , Oxylipins/chemistry , Oxylipins/metabolism
8.
Proc Natl Acad Sci U S A ; 112(19): 5909-14, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25918397

ABSTRACT

Diatoms and other phytoplankton play a crucial role in the global carbon cycle, fixing CO2 into organic carbon, which may then be exported to depth via sinking particles. The molecular diversity of this organic carbon is vast and many highly bioactive molecules have been identified. Polyunsaturated aldehydes (PUAs) are bioactive on various levels of the marine food web, and yet the potential for these molecules to affect the fate of organic carbon produced by diatoms remains an open question. In this study, the effects of PUAs on the natural microbial assemblages associated with sinking particles were investigated. Sinking particles were collected from 150 m in the water column and exposed to varying concentrations of PUAs in dark incubations over 24 h. PUA doses ranging from 1 to 10 µM stimulated respiration, organic matter hydrolysis, and cell growth by bacteria associated with sinking particles. PUA dosages near 100 µM appeared to be toxic, resulting in decreased bacterial cell abundance and metabolism, as well as pronounced shifts in bacterial community composition. Sinking particles were hot spots for PUA production that contained concentrations within the stimulatory micromolar range in contrast to previously reported picomolar concentrations of these compounds in bulk seawater. This suggests PUAs produced in situ stimulate the remineralization of phytoplankton-derived sinking organic matter, decreasing carbon export efficiency, and shoaling the average depths of nutrient regeneration. Our results are consistent with a "bioactivity hypothesis" for explaining variations in carbon export efficiency in the oceans.


Subject(s)
Aldehydes/chemistry , Carbon Cycle , Carbon Dioxide/chemistry , Atmosphere , Bacteria/metabolism , Biological Oxygen Demand Analysis , Biomass , Carbon/chemistry , Chromatography, High Pressure Liquid , Lipase/chemistry , Oceans and Seas , Oxygen/chemistry , Phytoplankton , Seawater , Spectrophotometry
9.
Front Microbiol ; 2: 229, 2011.
Article in English | MEDLINE | ID: mdl-22110469

ABSTRACT

Unicellular dinitrogen (N(2)) fixing cyanobacteria have only recently been identified in the ocean and recognized as important contributors to global N(2) fixation. The only cultivated representatives of the open ocean unicellular diazotrophs are multiple isolates of Crocosphaera watsonii. Although constituents of the genus are nearly genetically identical, isolates have been described in two size classes, large ∼5 µm and small ∼3 µm cell diameters. We show here that the large size class constitutively produces substantial amounts of extracellular polysaccharides (EPS) during exponential growth, up to 10 times more than is seen in the small size class, and does so under both N(2) fixing and non-N(2) fixing conditions. The EPS production exceeds the amount produced by larger phytoplankton such as diatoms and coccolithophores by one to two orders of magnitude, is ∼22% of the total particulate organic C in the culture, and is depleted in N compared to cellular material. The large difference in observed EPS production may be accounted for by consistently higher photochemical efficiency of photosystem II in the large (0.5) vs. small (∼0.35) strains. While it is known that Crocosphaera plays an important role in driving the biological carbon (C) pump through the input of new nitrogen (N) to the open ocean, we hypothesize that this species may also contribute directly to the C cycle through the constitutive production of EPS. Indeed, at two stations in the North Pacific Subtropical Gyre, ∼70% of large Crocosphaera cells observed were embedded in EPS. The evolutionary advantage of releasing such large amounts of fixed C is still unknown, but in regions where Crocosphaera can be abundant (i.e., the warm oligotrophic ocean) this material will likely have important biogeochemical consequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...