Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(45): 8849-8862, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37947798

ABSTRACT

Non-equilibrium processing of aqueous polyelectrolyte complex (PEC) coacervates is critical to many applications. In particular, many coacervate-forming systems are known to become trapped in out-of-equilibrium states (e.g., precipitation). The mechanism and conditions under which these states form, and whether they age, is not clearly understood. Here, we elucidate the influence of processing on the PEC coarsening mechanism as it varies with flow during mixing for a model system of poly(allylamine hydrochloride) and poly(acrylic acid sodium salt) in water. We demonstrate that flow conditions can be used to toggle the formation of rough, precipitate-like aggregates of micron-scale PEC structures. These structures form at compositions with viscous-dominant equilibrium rheology, and observations of their formation via optical microscopy suggest that they comprise colloidal aggregates of PEC coacervate droplets. We further show that these aggregates exhibit micron-scale coarsening, with a mixing time-dependent characteristic aging time scale. The results show that the formation of precipitate-like structures is not solely determined by composition, but is instead highly sensitive to mass transport and colloidal instability effects. Our observations suggest that the details of mixing flow can provide non-equilibrium structural control of a broad range of PEC coacervate materials orthogonally to structure-property inspired polymeric design. We anticipate that these findings will open the door for future studies on the control of non-equilibrium PEC formation and structure.

2.
Proc Natl Acad Sci U S A ; 120(39): e2309822120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37725651

ABSTRACT

External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.


Subject(s)
Energy-Generating Resources , Polymers , Transducers , Upper Extremity
3.
ACS Appl Mater Interfaces ; 15(36): 43075-43086, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37650860

ABSTRACT

Hydrogels are hydrated three-dimensional networks of hydrophilic polymers that are commonly used in the biomedical industry due to their mechanical and structural tunability, biocompatibility, and similar water content to biological tissues. The surface structure of hydrogels polymerized through free-radical polymerization can be modified by controlling environmental oxygen concentrations, leading to the formation of a polymer concentration gradient. In this work, 17.5 wt % polyacrylamide hydrogels are polymerized in low (0.01 mol % O2) and high (20 mol % O2) oxygen environments, and their mechanical and tribological properties are characterized through microindentation, nanoindentation, and tribological sliding experiments. Without significantly reducing the elastic modulus of the hydrogel (E* ≈ 200 kPa), we demonstrate an order of magnitude reduction in friction coefficient (from µ = 0.021 ± 0.006 to µ = 0.002 ± 0.001) by adjusting polymerization conditions (e.g., oxygen concentration). A quantitative analytical model based on polyacrylamide chemistry and kinetics was developed to estimate the thickness and structure of the monomer conversion gradient, termed the "surface gel layer". We find that polymerizing hydrogels at high oxygen concentrations leads to the formation of a preswollen surface gel layer that is approximately five times thicker (t ≈ 50 µm) and four times less concentrated (≈ 6% monomer conversion) at the surface prior to swelling compared to low oxygen environments (t ≈ 10 µm, ≈ 20% monomer conversion). Our model could be readily modified to predict the preswollen concentration profile of the polyacrylamide gel surface layer for any reaction conditions─monomer and initiator concentration, oxygen concentration, reaction time, and reaction media depth─or used to select conditions that correspond to a certain desired surface gel layer profile.

4.
Soft Matter ; 18(15): 3063-3075, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35363236

ABSTRACT

Evolution of composition, rheology, and morphology during phase separation in complex fluids is highly coupled to rheological and mass transport processes within the emerging phases, and understanding this coupling is critical for materials design of multiphase complex fluids. Characterizing these dependencies typically requires careful measurement of a large number of equilibrium and transport properties that are difficult to measure in situ as phase separation proceeds. Here, we propose and demonstrate a high-throughput microscopy platform to achieve simultaneous, in situ mapping of time-evolving morphology and microrheology in phase separating complex fluids over a large compositional space. The method was applied to a canonical example of polyelectrolyte complex coacervation, whereby mixing of oppositely charged species leads to liquid-liquid phase separation into distinct solute-dense and dilute phases. Morphology and rheology were measured simultaneously and kinetically after mixing to track the progression of phase separation. Once equilibrated, the dense phase viscosity was determined to high compositional accuracy using passive probe microrheology, and the results were used to derive empirical relationships between the composition and viscosity. These relationships were inverted to reconstruct the dense phase boundary itself, and further extended to other mixture compositions. The resulting predictions were validated by independent equilibrium compositional measurements. This platform paves the way for rapid screening and formulation of complex fluids and (bio)macromolecular materials, and serves as a critical link between formulation and rheology for multi-phase material discovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...