Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Front Plant Sci ; 14: 1096225, 2023.
Article in English | MEDLINE | ID: mdl-36818880

ABSTRACT

Despite frequent co-occurrence of drought and heat stress, the molecular mechanisms governing plant responses to these stresses in combination have not often been studied. This is particularly evident in non-model, perennial plants. We conducted large scale physiological and transcriptome analyses to identify genes and pathways associated with grapevine response to drought and/or heat stress during stress progression and recovery. We identified gene clusters with expression correlated to leaf temperature and water stress and five hub genes for the combined stress co-expression network. Several differentially expressed genes were common to the individual and combined stresses, but the majority were unique to the individual or combined stress treatments. These included heat-shock proteins, mitogen-activated kinases, sugar metabolizing enzymes, and transcription factors, while phenylpropanoid biosynthesis and histone modifying genes were unique to the combined stress treatment. Following physiological recovery, differentially expressed genes were found only in plants under heat stress, both alone and combined with drought. Taken collectively, our results suggest that the effect of the combined stress on physiology and gene expression is more severe than that of individual stresses, but not simply additive, and that epigenetic chromatin modifications may play an important role in grapevine responses to combined drought and heat stress.

3.
Nat Commun ; 12(1): 1952, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782393

ABSTRACT

The non-protein amino acid γ-aminobutyric acid (GABA) has been proposed to be an ancient messenger for cellular communication conserved across biological kingdoms. GABA has well-defined signalling roles in animals; however, whilst GABA accumulates in plants under stress it has not been determined if, how, where and when GABA acts as an endogenous plant signalling molecule. Here, we establish endogenous GABA as a bona fide plant signal, acting via a mechanism not found in animals. Using Arabidopsis thaliana, we show guard cell GABA production is necessary and sufficient to reduce stomatal opening and transpirational water loss, which improves water use efficiency and drought tolerance, via negative regulation of a stomatal guard cell tonoplast-localised anion transporter. We find GABA modulation of stomata occurs in multiple plants, including dicot and monocot crops. This study highlights a role for GABA metabolism in fine tuning physiology and opens alternative avenues for improving plant stress resilience.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Chloride Channels/genetics , Glutamate Decarboxylase/genetics , Plant Stomata/metabolism , Plant Transpiration/genetics , Water/metabolism , gamma-Aminobutyric Acid/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Chloride Channels/metabolism , Droughts , Gene Expression Regulation, Plant , Glutamate Decarboxylase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hordeum/genetics , Hordeum/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Stomata/drug effects , Plant Stomata/genetics , Plant Transpiration/drug effects , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Glycine max/genetics , Glycine max/metabolism , Stress, Physiological , Nicotiana/genetics , Nicotiana/metabolism , Vicia faba/genetics , Vicia faba/metabolism
4.
Hortic Res ; 7(1): 84, 2020.
Article in English | MEDLINE | ID: mdl-32528696

ABSTRACT

A colchicine-induced autotetraploid grapevine exhibiting potentially valuable agronomic traits for grape production and breeding, including self-pruning, was identified. This study investigated DNA methylation variation and its role in gene expression during self-pruning in the autotetraploid grapevine. We used RNA-Seq to estimate differentially expressed genes between diploid and autotetraploid grapevine shoot tips. The genes showing increases in the autotetraploid were mainly related to stress response pathways, whereas those showing decreases in the autotetraploid were related to biological metabolism and biosynthesis. Whole-genome bisulfite sequencing was performed to produce single-base methylomes for the diploid and autotetraploid grapevines. Comparison between the methylomes revealed that they were conserved in CG and CHG contexts. In the autotetraploid grapevine, hypodifferentially methylated regions (DMRs) and hyper-DMRs in the gene body increased or decreased gene expression, respectively. Our results indicated that a hypo-DMR in the ACO1 gene body increased its expression and might promote self-pruning. This study reports that hypo-DMRs in the gene body increase gene expression in plants and reveals the mechanism underlying the changes in the modifications affecting gene expression during genome duplication. Overall, our results provide valuable information for understanding the relationships between DNA methylation, gene expression, and autotetraploid breeding in grape.

5.
BMC Plant Biol ; 19(1): 535, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31795928

ABSTRACT

BACKGROUND: Elucidating the effect of source-sink relations on berry composition is of interest for wine grape production as it represents a mechanistic link between yield, photosynthetic capacity and wine quality. However, the specific effects of carbohydrate supply on berry composition are difficult to study in isolation as leaf area or crop adjustments can also change fruit exposure, or lead to compensatory growth or photosynthetic responses. A new experimental system was therefore devised to slow berry sugar accumulation without changing canopy structure or yield. This consisted of six transparent 1.2 m3 chambers to enclose large pot-grown grapevines, and large soda-lime filled scrubbers that reduced carbon dioxide (CO2) concentration of day-time supply air by approximately 200 ppm below ambient. RESULTS: In the first full scale test of the system, the chambers were installed on mature Shiraz grapevines for 14 days from the onset of berry sugar accumulation. Three chambers were run at sub-ambient CO2 for 10 days before returning to ambient. Canopy gas exchange, and juice hexose concentrations were determined. Net CO2 exchange was reduced from 65.2 to 30 g vine- 1 day- 1, or 54%, by the sub-ambient treatment. At the end of the 10 day period, total sugar concentration was reduced from 95 to 77 g L- 1 from an average starting value of 23 g L- 1, representing a 25% reduction. Scaling to a per vine basis, it was estimated that 223 g of berry sugars accumulated under ambient supply compared to 166 g under sub-ambient, an amount equivalent to 50 and 72% of total C assimilated. CONCLUSIONS: Through supply of sub-ambient CO2 using whole canopy gas exchange chambers system, an effective method was developed for reducing photosynthesis and slowing the rate of berry sugar accumulation without modifying yield or leaf area. While in this case developed for further investigations of grape and wine composition, the system has broader applications for the manipulation and of study of grapevine source-sink relations.


Subject(s)
Carbon Dioxide/metabolism , Crop Production/methods , Sugars/metabolism , Vitis/physiology , Fruit/chemistry , Photosynthesis/physiology , Plant Leaves/physiology
6.
Sensors (Basel) ; 18(9)2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30177637

ABSTRACT

This paper introduces GRover (the grapevine rover), an adaptable mobile platform for the deployment and testing of proximal imaging sensors in vineyards for the non-destructive assessment of trunk and cordon volume and pruning weight. A SICK LMS-400 light detection and ranging (LiDAR) radar mounted on GRover was capable of producing precise (±3 mm) 3D point clouds of vine rows. Vineyard scans of the grapevine variety Shiraz grown under different management systems at two separate locations have demonstrated that GRover is able to successfully reproduce a variety of vine structures. Correlations of pruning weight and vine wood (trunk and cordon) volume with LiDAR scans have resulted in high coefficients of determination (R² = 0.91 for pruning weight; 0.76 for wood volume). This is the first time that a LiDAR of this type has been extensively tested in vineyards. Its high scanning rate, eye safe laser and ability to distinguish tissue types make it an appealing option for further development to offer breeders, and potentially growers, quantified measurements of traits that otherwise would be difficult to determine.

7.
New Phytol ; 217(3): 1113-1127, 2018 02.
Article in English | MEDLINE | ID: mdl-29160564

ABSTRACT

Under salinity, Vitis spp. rootstocks can mediate salt (NaCl) exclusion from grafted V. vinifera scions enabling higher grapevine yields and production of superior wines with lower salt content. Until now, the genetic and mechanistic elements controlling sodium (Na+ ) exclusion in grapevine were unknown. Using a cross between two Vitis interspecific hybrid rootstocks, we mapped a dominant quantitative trait locus (QTL) associated with leaf Na+ exclusion (NaE) under salinity stress. The NaE locus encodes six high-affinity potassium transporters (HKT). Transcript profiling and functional characterization in heterologous systems identified VisHKT1;1 as the best candidate gene for controlling leaf Na+ exclusion. We characterized four proteins encoded by unique VisHKT1;1 alleles from the parents, and revealed that the dominant HKT variants exhibit greater Na+ conductance with less rectification than the recessive variants. Mutagenesis of VisHKT1;1 and TaHKT1.5-D from bread wheat, demonstrated that charged amino acid residues in the eighth predicted transmembrane domain of HKT proteins reduces inward Na+ conductance, and causes inward rectification of Na+ transport. The origin of the recessive VisHKT1;1 alleles was traced to V. champinii and V. rupestris. We propose that the genetic and functional data presented here will assist with breeding Na+ -tolerant grapevine rootstocks.


Subject(s)
Plant Proteins/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Sodium/metabolism , Vitis/metabolism , Alleles , Animals , Biological Transport , Cell Membrane/metabolism , Ion Channel Gating , Membrane Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Vitis/genetics , Xenopus
8.
Plant Physiol ; 175(3): 1121-1134, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28899961

ABSTRACT

Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (ΨM) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in ΨM It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone abscisic acid (ABA). Interestingly, recent lines of evidence in Arabidopsis (Arabidopsis thaliana) suggested that stomatal responsiveness is also controlled by an ABA action on leaf water supply upstream from stomata. Here, we tested the possibility in grapevine (Vitis vinifera) that different genotypes ranging from near isohydric to more anisohydric may have different sensitivities in these ABA responses. Measurements on whole plants in drought conditions were combined with assays on detached leaves fed with ABA. Two different methods consistently showed that leaf hydraulic conductance (Kleaf) was down-regulated by exogenous ABA, with strong variations depending on the genotype. Importantly, variation between isohydry and anisohydry correlated with Kleaf sensitivity to ABA, with Kleaf in the most anisohydric genotypes being unresponsive to the hormone. We propose that the observed response of Kleaf to ABA may be part of the overall ABA regulation of leaf water status.


Subject(s)
Abscisic Acid/pharmacology , Down-Regulation/drug effects , Plant Leaves/physiology , Vitis/genetics , Vitis/physiology , Water/physiology , Genetic Variation , Genotype , Models, Biological , Plant Exudates/metabolism , Plant Leaves/drug effects , Vitis/drug effects
9.
Front Plant Sci ; 7: 1605, 2016.
Article in English | MEDLINE | ID: mdl-27857716

ABSTRACT

Resveratrols are polyphenolic secondary metabolites that can benefit human health, and only occur in a few plant families including Vitaceae. It has been reported that abscisic acid (ABA) can induce veraison (the onset of grape berry ripening) and may induce the accumulation of resveratrol in berry skin. However, the relationships between ABA, veraison, the accumulation of anthocyanins and the accumulation of resveratrol in the berry are poorly understood. This study attempted to answer this question through an investigation of the effect of applied ABA and fluridone (a synthetic inhibitor of ABA) on the biosynthesis and accumulation of ABA, anthocyanin, and resveratrol in Beihong (Vitis vinifera × Vitis amurensis) berry skin. Under natural conditions, resveratrol concentration was very low before 91 DAA (days after anthesis), i.e., 2 weeks after veraison, however, it increased sharply from this point to 126 DAA (maturity). Exogenous ABA applications all resulted in an increase in berry skin ABA and anthocyanin concentration, irrespective of the developmental stage at which the treatment occurred (20 and 10 days pre-veraison, veraison or 7 days post-veraison), thereby advancing veraison. In contrast, resveratrol concentration increased only when ABA was applied at 10 days pre-veraison or at veraison. As a result, the accumulation of resveratrol was associated with veraison in grape berry skin and this accumulation, together with that of anthocyanins, was associated with ABA concentration. The response of resveratrol biosynthesis in the berry skin to manipulation of ABA varied during berry development and was less sensitive to ABA than the response of anthocyanin biosynthesis.

10.
J Chem Ecol ; 35(4): 476-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19352773

ABSTRACT

Global food security in a changing climate depends on both the nutritive value of staple crops as well as their yields. Here, we examined the direct effect of atmospheric carbon dioxide on the toxicity of the important pasture crop, Trifolium repens L. (clover). Shoots of T. repens contain cyanogenic glycosides that break down to release toxic hydrogen cyanide when damaged. The ability of animals to tolerate cyanogenic compounds is dependent, in part, on their overall protein intake. We grew T. repens communities at ambient and approximately twice-ambient CO(2) in a controlled environment greenhouse experiment. We found that the ratio of total cyanogenic glycosides to total protein ratio was nearly two times higher in leaves of T. repens grown at elevated CO(2). This study highlights the importance of assessing the nutritive value of this and other plants in response to rising CO(2) so that steps can be taken to address any adverse consequences for herbivores.


Subject(s)
Carbon Dioxide/metabolism , Glycosides/metabolism , Trifolium/metabolism , Adaptation, Physiological , Atmosphere , Plant Leaves/metabolism , Plant Shoots/metabolism , Trifolium/growth & development
11.
Plant Cell Environ ; 32(3): 259-70, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19054350

ABSTRACT

Photosynthetic rate per unit nitrogen generally declines as leaf mass per unit area (LMA) increases. To determine how much of this decline was associated with allocating a greater proportion of leaf nitrogen into cell wall material, we compared two groups of plants. The first group consisted of two species from each of eight genera, all of which were perennial evergreens growing in the Australian National Botanic Gardens (ANBG). The second group consisted of seven Eucalyptus species growing in a greenhouse. The percentage of leaf biomass in cell walls was independent of variation in LMA within any genus, but varied from 25 to 65% between genera. The nitrogen concentration of cell wall material was 0.4 times leaf nitrogen concentration for all species apart from Eucalyptus, which was 0.6 times leaf nitrogen concentration. Between 10 and 30% of leaf nitrogen was recovered in the cell wall fraction, but this was independent of LMA. No trade-off was observed between nitrogen associated with cell walls and the nitrogen allocated to ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco). Variation in photosynthetic rate per unit nitrogen could not be explained by variation in cell wall nitrogen.


Subject(s)
Cell Wall/chemistry , Eucalyptus/chemistry , Nitrogen/analysis , Photosynthesis/physiology , Plant Leaves/chemistry , Biomass , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Ribulose-Bisphosphate Carboxylase/metabolism
12.
New Phytol ; 169(1): 157-67, 2006.
Article in English | MEDLINE | ID: mdl-16390427

ABSTRACT

The response of biological nitrogen fixation (BNF) to elevated CO(2) was examined in white clover (Trifolium repens)-dominated swards under both high and low phosphorus availability. Mixed swards of clover and buffalo grass (Stenotaphrum secundatum) were grown for 15 months in 0.2 m2 sand-filled mesocosms under two CO2 treatments (ambient and twice ambient) and three nutrient treatments [no N, and either low or high P (5 or 134 kg P ha(-1)); the third nutrient treatment was supplied with high P and N (240 kg N ha(-1))]. Under ambient CO2, high P increased BNF from 410 to 900 kg ha(-1). Elevated CO2 further increased BNF to 1180 kg ha(-1) with high P, but there was no effect of CO2 on BNF with low P. Allocation of N belowground increased by approx. 50% under elevated CO2 irrespective of supplied P. The results suggest that where soil P availability is low, elevated CO2 will not increase BNF, and pasture quality could decrease because of a reduction in aboveground N.


Subject(s)
Carbon Dioxide/pharmacology , Nitrogen Fixation/physiology , Phosphorus/pharmacology , Trifolium/metabolism , Australia , Biomass , Carbon Dioxide/metabolism , Phosphorus/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Poaceae/metabolism , Soil , Trifolium/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL