Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Cardiovasc Digit Health J ; 1(1): 45-51, 2020.
Article in English | MEDLINE | ID: mdl-35265873

ABSTRACT

Early detection and diagnosis of atrial fibrillation (AF) is essential in order to prevent stroke and other severe health consequences. The challenges in diagnosing AF arise from its intermittent and asymptomatic nature. Wrist-worn devices that use monitoring based on photoplethysmography have been proposed recently as a possible solution because of their ability to monitor heart rate and rhythm for long periods of time at low cost. Long-term continuous monitoring with implantable devices has been shown to increase the percentage of detected AF episodes, but the additional value of wrist-worn devices has yet to be determined. In this review, we present the state of the art in AF detection with wrist-worn devices, discuss the potential of the technology and current knowledge gaps, and propose directions for future research. The state-of-the-art methods show excellent accuracy for AF detection. However, most of the studies were conducted in hospital settings, and more studies showing the accuracy of the technology for ambulatory long-term monitoring are needed. Objective comparison of results and methodologies among different studies currently is difficult due to the lack of adequate public datasets.

3.
IEEE J Biomed Health Inform ; 24(6): 1610-1618, 2020 06.
Article in English | MEDLINE | ID: mdl-31689222

ABSTRACT

OBJECTIVE: Photoplethysmography (PPG) enables unobtrusive heart rate monitoring, which can be used in wrist-worn applications. Its potential for detecting atrial fibrillation (AF) has been recently presented. Besides AF, another cardiac arrhythmia increasing stroke risk and requiring treatment is atrial flutter (AFL). Currently, the knowledge about AFL detection with PPG is limited. The objective of our study was to develop a model that classifies AF, AFL, and sinus rhythm with or without premature beats from PPG and acceleration data measured at the wrist in daily life. METHODS: A dataset of 40 patients was collected by measuring PPG and accelerometer data, as well as electrocardiogram as a reference, during 24-hour monitoring. The dataset was split into 75%-25% for training and testing a Random Forest (RF) model, which combines features from PPG, inter-pulse intervals (IPI), and accelerometer data, to classify AF, AFL, and other rhythms. The performance was compared to an AF detection algorithm combining traditional IPI features for determining the robustness of the accuracy in presence of AFL. RESULTS: The RF model classified AF/AFL/other with sensitivity and specificity of 97.6/84.5/98.1% and 98.2/99.7/92.8%, respectively. The results with the IPI-based AF classifier showed that the majority of false detections were caused by AFL. CONCLUSION: The PPG signal contains information to classify AFL in the presence of AF, sinus rhythm, or sinus rhythm with premature contractions. SIGNIFICANCE: PPG could indicate presence of AFL, not only AF.


Subject(s)
Atrial Fibrillation/diagnosis , Atrial Flutter/diagnosis , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Accelerometry , Aged , Aged, 80 and over , Electrocardiography , Humans , Machine Learning , Middle Aged , Sensitivity and Specificity
4.
Physiol Meas ; 39(11): 115007, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30475748

ABSTRACT

OBJECTIVE: Wrist-worn photoplethysmography (PPG) can enable free-living physiological monitoring of people during diverse activities, ranging from sleep to physical exercise. In many applications, it is important to remove the pulses not related to sinus rhythm beats from the PPG signal before using it as a cardiovascular descriptor. In this manuscript, we propose an algorithm to assess the morphology of the PPG signal in order to reject non-sinus rhythm pulses, such as artefacts or pulses related to arrhythmic beats. APPROACH: The algorithm segments the PPG signal into individual pulses and dynamically evaluates their morphological likelihood of being normal sinus rhythm pulses via a template-matching approach that accounts for the physiological variability of the signal. The normal sinus rhythm likelihood of each pulse is expressed as a quality index that can be employed to reject artefacts and pulses related to arrhythmic beats. MAIN RESULTS: Thresholding the pulse quality index enables near-perfect detection of normal sinus rhythm beats by rejecting most of the non-sinus rhythm pulses (positive predictive value 98%-99%), both in healthy subjects and arrhythmic patients. The rejection of arrhythmic beats is almost complete (sensitivity to arrhythmic beats 7%-3%), while the sensitivity to sinus rhythm beats is not compromised (96%-91%). SIGNIFICANCE: The developed algorithm consistently detects normal sinus rhythm beats in a PPG signal by rejecting artefacts and, as a first of its kind, arrhythmic beats. This increases the reliability in the extraction of features which are adversely influenced by the presence of non-sinus pulses, whether related to inter-beat intervals or to pulse morphology, from wrist-worn PPG signals recorded in free-living conditions.


Subject(s)
Algorithms , Heart Rate , Photoplethysmography , Signal Processing, Computer-Assisted , Wrist , Arrhythmias, Cardiac/physiopathology , Artifacts , Humans , Monitoring, Physiologic
5.
J Am Heart Assoc ; 7(15): e009351, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30371247

ABSTRACT

Background Long-term continuous cardiac monitoring would aid in the early diagnosis and management of atrial fibrillation ( AF ). This study examined the accuracy of a novel approach for AF detection using photo-plethysmography signals measured from a wrist-based wearable device. Methods and Results ECG and contemporaneous pulse data were collected from 2 cohorts of AF patients: AF patients (n=20) undergoing electrical cardioversion ( ECV ) and AF patients (n=40) that were prescribed for 24 hours ECG Holter in outpatient settings ( HOL ). Photo-plethysmography and acceleration data were collected at the wrist and processed to determine the inter-pulse interval and discard inter-pulse intervals in presence of motion artifacts. A Markov model was deployed to assess the probability of AF given irregular pattern in inter-pulse interval sequences. The AF detection algorithm was evaluated against clinical rhythm annotations of AF based on ECG interpretation. Photo-plethysmography recordings from apparently healthy volunteers (n=120) were used to establish the false positive AF detection rate of the algorithm. A total of 42 and 855 hours (AF: 21 and 323 hours) of photo-plethysmography data were recorded in the ECV and HOL cohorts, respectively. AF was detected with >96% accuracy ( ECV, sensitivity=97%; HOL , sensitivity=93%; both with specificity=100%). Because of motion artifacts, the algorithm did not provide AF classification for 44±16% of the monitoring period in the HOL group. In healthy controls, the algorithm demonstrated a <0.2% false positive AF detection rate. Conclusions A novel AF detection algorithm using pulse data from a wrist-wearable device can accurately discriminate rhythm irregularities caused by AF from normal rhythm.


Subject(s)
Atrial Fibrillation/diagnosis , Monitoring, Ambulatory/methods , Photoplethysmography/methods , Adult , Aged , Aged, 80 and over , Case-Control Studies , Electrocardiography , Electrocardiography, Ambulatory , Female , Humans , Male , Middle Aged , Wrist
6.
Physiol Meas ; 39(8): 084001, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29995641

ABSTRACT

OBJECTIVE: Atrial fibrillation (AF) is the most commonly experienced arrhythmia and it increases the risk of stroke and heart failure. The challenge in detecting the presence of AF is the occasional and asymptomatic manifestation of the condition. Long-term monitoring can increase the sensitivity of detecting intermittent AF episodes, however it is either cumbersome or invasive and costly with electrocardiography (ECG). Photoplethysmography (PPG) is an unobtrusive measuring modality enabling heart rate monitoring, and promising results have been presented in detecting AF. However, there is still limited knowledge about the applicability of the PPG solutions in free-living conditions. The aim of this study was to compare the inter-beat interval derived features for AF detection between ECG and wrist-worn PPG in daily life. APPROACH: The data consisted of 24 h ECG, PPG, and accelerometer measurements from 27 patients (eight AF, 19 non-AF). In total, seven features (Shannon entropy, root mean square of successive differences (RMSSD), normalized RMSSD, pNN40, pNN70, sample entropy, and coefficient of sample entropy (CosEn)) were compared. Body movement was measured with the accelerometer and used with three different thresholds to exclude PPG segments affected by movement. MAIN RESULTS: CosEn resulted as the best performing feature from ECG with Cohens kappa 0.95. When the strictest movement threshold was applied, the same performance was obtained with PPG (kappa = 0.96). In addition, pNN40 and pNN70 reached similar results with the same threshold (kappa = 0.95 and 0.94), but were more robust with respect to movement artefacts. The coverage of PPG was 24.0%-57.6% depending on the movement threshold compared to 92.1% of ECG. SIGNIFICANCE: The inter-beat interval features derived from PPG are equivalent to the ones from ECG for AF detection. Movement artefacts substantially worsen PPG-based AF monitoring in free-living conditions, therefore monitoring coverage needs to be carefully selected. Wrist-worn PPG still provides a promising technology for long-term AF monitoring.


Subject(s)
Activities of Daily Living , Atrial Fibrillation/diagnosis , Electrocardiography , Photoplethysmography , Adult , Aged , Atrial Fibrillation/physiopathology , Female , Heart Rate , Humans , Male , Middle Aged , Movement , ROC Curve , Signal Processing, Computer-Assisted
7.
Epilepsia Open ; 2(1): 67-75, 2017 Mar.
Article in English | MEDLINE | ID: mdl-29750214

ABSTRACT

OBJECTIVE: Electrographic seizures in critically ill patients are often equivocal. In this study, we sought to determine the diagnostic accuracy of electrographic seizure annotation in adult intensive care units (ICUs) and to identify affecting factors. METHODS: To investigate diagnostic accuracy, interreader agreement (IRA) measures were derived from 5,769 unequivocal and 6,263 equivocal seizure annotations by five experienced electroencephalogram (EEG) readers after reviewing 74 days of EEGs from 50 adult ICU patients. Factors including seizure equivocality (unequivocal vs. equivocal) and laterality (generalized, partial, or bilaterally independent), cyclicity (cyclic vs. noncyclic), persistency (occurrence of status epilepticus), and patient consciousness level (coma vs. noncoma) were further investigated for their influence on IRA measures. RESULTS: On average, 70% of seizures marked by a reference reader overlapped, at least in part, with those marked by a test reader (any-overlap sensitivity, AO-Sn). Agreed seizure duration between reader pairs (overlap-integral sensitivity, OI-Sn) was 62%, while agreed nonseizure duration (overlap-integral specificity, OI-Sp) was 99%. A test reader would annotate one additional seizure not overlapping with a reference reader's annotation in every 11.7 h of EEG, that is, the false-positive rate (FPR) was 0.0854/h. Classifying seizure patterns into unequivocal and equivocal improved specificity and FPR (unequivocal patterns) but compromised sensitivity only for equivocal patterns. Sensitivity of all and unequivocal annotations was higher for patients with status epilepticus. Specificity was higher for partial than for bilaterally independent unequivocal seizure patterns, and lower for cyclic all seizure patterns. SIGNIFICANCE: Diagnosing electrographic seizures in critically ill adults is highly specific and moderately sensitive. Improved criteria for diagnosing electrographic seizures in the ICU are needed.

8.
Physiol Meas ; 37(8): 1204-16, 2016 08.
Article in English | MEDLINE | ID: mdl-27454128

ABSTRACT

In this paper, we propose an algorithm that classifies whether a generated cardiac arrhythmia alarm is true or false. The large number of false alarms in intensive care is a severe issue. The noise peaks caused by alarms can be high and in a noisy environment nurses can experience stress and fatigue. In addition, patient safety is compromised because reaction time of the caregivers to true alarms is reduced. The data for the algorithm development consisted of records of electrocardiogram (ECG), arterial blood pressure, and photoplethysmogram signals in which an alarm for either asystole, extreme bradycardia, extreme tachycardia, ventricular fibrillation or flutter, or ventricular tachycardia occurs. First, heart beats are extracted from every signal. Next, the algorithm selects the most reliable signal pair from the available signals by comparing how well the detected beats match between different signals based on [Formula: see text]-score and selecting the best match. From the selected signal pair, arrhythmia specific features, such as heart rate features and signal purity index are computed for the alarm classification. The classification is performed with five separate Random Forest models. In addition, information on the local noise level of the selected ECG lead is added to the classification. The algorithm was trained and evaluated with the PhysioNet/Computing in Cardiology Challenge 2015 data set. In the test set the overall true positive rates were 93 and 95% and true negative rates 80 and 83%, respectively for events with no information and events with information after the alarm. The overall challenge scores were 77.39 and 81.58.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Clinical Alarms , Critical Care , Machine Learning , Signal Processing, Computer-Assisted , Arrhythmias, Cardiac/physiopathology , Electrocardiography/instrumentation , False Positive Reactions , Heart Rate , Humans , Monitoring, Physiologic/instrumentation , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...