Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Trace Elem Med Biol ; 84: 127469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759447

ABSTRACT

Cadmium (Cd) exposure in mothers can cause respiratory issues in newborns, but the exact toxicity mechanisms are not fully understood. Vitamin D deficiency in Cd-exposed rats is associated with increased cadmium accumulation in tissues. Finding a cost-effective medication that is vital for the body while also reducing the effects of poisoning is crucial in treating poisonings. To investigate the mechanisms of Cd-induced lung toxicity, we examined the impact of prolonged Cd exposure in female rats before pregnancy on newborn lung health, focusing on sera TNF-α level, lung P53, Foxo1 mRNA, and lung VEGF, and BMP-4 protein level. A total of 50 rats were divided into control, Cd, Cd+Vitamin D, Cd+Mg, and Cd + Vitamin D+Mg groups. Cd exposure resulted in higher serum TNF-α levels and a significant rise in P53 mRNA levels. Additionally, the occurrence of hemorrhage, inflammatory cell infiltration, and thickening of alveolar walls decreased following treatment with vitamin D + Mg. Although Cd did not affect the newborns' body weight, it did impair their lung function. These findings suggest that the Cd-induced increase in the P53 gene expression could be alleviated by vitamin D and Mg, along with the elevation of VEGF and BMP-4 proteins and Foxo1 gene expression. The study revealed that environmental toxins can sometimes harm molecules and proteins, leading to damage in critical fetal tissues. However, these issues can be mitigated through essential supplements. STRUCTURED ABSTRACT: The increasing role of Cd in the erratic behavior of numerous biological and molecular entities, notably the development of fetal lung tissue, has made it beneficial to investigate the possible adverse effects of Cd exposure in pregnant mothers and fetal organ development, where instinctive molecular events occur. Researchers are encouraged to create new aspects of medications to reduce clinical symptoms and improve the quality of life due to exposure to metal toxins, particularly in industrialized countries. The present study aimed to evaluate histopathological and molecular modifications of fetal lungs caused by maternal Cd toxicosis and evaluate the possible ameliorating effects of vitamin D and Mg alone and in combination with fetal lung developmental abnormalities, followed by maternal toxin induction, which can be generalized to humans. Fifty female Wistar rats were purchased from the Pasteur Institute of Iran. To induce the model, cadmium at a dose of 2 mg/kg body weight was injected intraperitoneally into the female rats over 28 days before mating (5 days after injection in a week). Afterward, the female rats were randomly divided into type IV polycarbonate cages and mated with healthy male rats. The pregnancy was confirmed by observation of the vaginal plaque, which was subsequently observed, and the number of days of embryo formation was calculated. Subsequently, the pregnant rats were assigned to the following groups and received PBS, vitamin D, Mg, or vitamin D + Mg. At the end of the nine-day treatment period (the 6th day of pregnancy to the 14th day), the neonates were born vaginally, and their body weight and mortality were recorded. The P53 and Foxo1 gene expression levels in the left and right lobes of the homogenized lungs of the newborns in each group were assessed. TNF-alpha was detected in the sera collected from the newborns by ELISA. The isolated left and right lung tissues were homogenized in radioimmunoprecipitation assay (RIPA) buffer and the superior phase was collected to determine the total protein content by Lowry's method and VEGF and BMP-4 protein levels. The obtained lung samples from newborn rats were fixed in a 10% formalin solution for tissue processing. The fixed samples were embedded in paraffin, and serial paraffin sections were prepared for hematoxylin and eosin staining. This study is the first to examine how maternal Cd exposure affects fetal lung development and to estimate the impact of prescribing Mg and vitamin D during pregnancy. The present study assessed the effects of a repeated dose of Cd for 4 weeks before pregnancy on the lung development of newborn rats born to mothers treated with vitamin D and Mg. The results showed that the P53 gene was overexpressed in the model group, while Foxo1 gene expression was downregulated, negatively impacting the lung structure and developmental indices of the fetuses. Therefore, the intake of vitamin D and Mg may contribute to improving the various stages of Cd-induced lung injury by modulating lung inflammation and mucosal secretion while also positively influencing the number of surviving offspring.


Subject(s)
Animals, Newborn , Cadmium , Lung , Vitamin D , Animals , Cadmium/toxicity , Female , Vitamin D/administration & dosage , Vitamin D/pharmacology , Rats , Lung/drug effects , Lung/metabolism , Lung/pathology , Pregnancy , Dietary Supplements , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
2.
Pestic Biochem Physiol ; 198: 105724, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225079

ABSTRACT

Chlorpyrifos(CPF) is a well-known hepatotoxic agent that has side effects on several organs. On the contrary, hepatic macrophages are crucial in maintaining liver tissue integrity. The main objective of this study was to evaluate the effects and possible mechanisms of niosomal hesperidin (Nio + Hesp), a flavanone glycoside found in citrus fruits, on M1-M2 liver macrophage polarization and inflammatory cells in the brain, liver, and ovarian tissues. Forty C57 mice were divided into CPF(3 mg/kg), Sham(Dimethyl sulfoxide 40 µL/kg), CPF + Hesp(100 mg/kg), and CPF + Nio + Hesp (100 mg/kg) groups. The activity of sera superoxide dismutase (SOD) and malondialdehyde (MDA), brain, liver, and ovary tissues changes, and M1-M2 liver macrophage polarization were evaluated by examining the expression of CD163 and CD68 genes. Hepatic lesions consisting of sporadic foci of coagulation necrosis, inflammatory cell reaction, and regenerative fibrosis were seen following CPF injection, reflected by significant overexpression of CD163 and CD68 genes. In comparison, Nio + Hesp declined the amount of cell apoptosis in the liver and downregulated CD163 and CD68 gene expression. Both Nio + Hesp and Hesp alleviated CPF-induced hepatotoxicity, however, Nio + Hesp was superior to hesperidin in the downregulation of the CD163 and CD68 gene expression. Even though a significant difference between hesperidin and Nio + Hesp was observed in the number of Graafian follicles, corpus luteum, and peri-antral follicles, no substantial difference was observed in primary follicles. The ameliorative effects of Hesp and Nio + Hesp may be at least in part due to their antioxidant and anti-inflammatory properties. These findings showed that both M1- and M2-macrophages contributed to the development of hepatic lesions induced by CPF and provided information about macrophage activation, indicating the importance of analysis of macrophage phenotypes for hepatotoxicity based on M1/M2-polarization which can be downregulated by niosomal nesperidin.


Subject(s)
Chemical and Drug Induced Liver Injury , Chlorpyrifos , Hesperidin , Mice , Animals , Chlorpyrifos/toxicity , Hesperidin/pharmacology , Macrophage Activation , Inflammation , Macrophages , Chemical and Drug Induced Liver Injury/pathology
3.
Animals (Basel) ; 13(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37958127

ABSTRACT

ß-Defensins are cationic antimicrobial peptides (AMPs) that play an important role in the innate immune defense of bovines. They are constitutively expressed in mammary glands and induced differently in response to pathogens. Their expression is influenced by various factors, including hormones, plant-derived compounds, and dietary energy imbalance. The toll-like receptors (TLRs)/nuclear factor-kappa B (NF-κB) pathway plays a crucial role in ß-defensin induction, while alternative pathways such as mitogen-activated protein kinase (MAPK) and epigenetic regulation also make substantial contributions. ß-Defensins exhibit bactericidal activity against a wide range of pathogens, including two major mastitis pathogens, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), primarily through membrane disruption. ß-Defensins have low cytotoxicity to host cells and demonstrate immunomodulatory properties, and pathogens also display minimal resistance to these AMPs. Given the increasing concern in antimicrobial resistance, the potential of ß-defensins as natural antimicrobials has garnered considerable attention. This article provides an overview of the characteristics of bovine ß-defensins, their expression pathways, their mode of action, and factors influencing their expression in the mammary glands of cattle. Additionally, it identifies the current gaps in research within this field and suggests areas that require further investigation. Understanding the regulation and function of ß-defensins offers valuable insights to develop effective strategies for strengthening the immune system of mammary glands, reducing the reliance on synthetic antimicrobials, and explore novel natural antimicrobial alternatives.

4.
Vet Res Forum ; 14(1): 45-52, 2023.
Article in English | MEDLINE | ID: mdl-36816860

ABSTRACT

Various factors are effective in reducing the fertility rate. This experiment aimed to investigate chlorpyrifos (CPF), an organophosphate, that could alter the structure of the uterus and the molecules involved in parental and fetal. CPF was injected intraperitoneally in thirty mice for five days in a week (six weeks). The animals were euthanized on the 5th day of gestation, then their blood and uterus were collected for biochemical and histopathological assays. Exposure to CPF resulted in a significant reduction in maternal weight gain and the number of litters. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly increased in blood serum of the CPF group compared with the control. The number of uterus glands, endometrium thickness, and the uterine cavity were changed following CPF injection. Additional investigation indicated that the expressions of L-selectin, L-selectin ligand, and heparin-binding epidermal growth factor (HB-EGF) as initial adhesion of mice blastocysts and maternal endometrium biomarkers were downregulated in the CPF group. Nevertheless, any mortality and abnormal clinical symptoms were not observed in the treated mice. This study revealed a potential molecular mechanism of continuous CPF-induced toxicity in fetal-maternal attachment without clinical symptoms.

5.
Braz. J. Pharm. Sci. (Online) ; 59: e21025, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439501

ABSTRACT

Abstract The present study investigated the effects of valerian methanolic extract and valerenic acid on the expression of LL-37 gene and protein in A549 and MRC5 line cells. After preparing Valerian seeds, sowing them in March 2020, and harvesting the rhizome in October 2020, the extract was prepared from the valerian rhizome by maceration method. Valerian acid content was determined using high performance liquid chromatography (HPLC). Two cell lines (A549 and MRC-5) were used to study the effects of valerian extract, and the MTT test was used to evaluate cell viability. The expression of LL-37 mRNA and protein was assessed by Real-Time PCR and western blot, respectively. In vivo safety assessments and histopathological analysis were also conducted. Data was analyzed by Graphpad Prism 8 software. Valerian methanolic extract and valerenic acid upregulated the LL-37 mRNA and protein expression in both treated cell lines. Valerenic acid showed a greater effect on upregulating LL-37 expression than valerian methanolic extract. A549 cells were more sensitive to valerian methanolic extract compared to MRC5 cells, and its cell viability was reduced. Furthermore, liver and kidney-related safety assessments showed that valerian methanolic extract had no toxic effects. In general, it was concluded that the methanolic extract of valerian as well as the resulting valerenic acid as the most important component of the extract has the ability to upregulate LL-37expression. Therefore, methanolic extract of valerian and valerenic acid can be considered for improving the immune system.


Subject(s)
Valerian/adverse effects , Plant Extracts/adverse effects , Cathelicidins/adverse effects , Blotting, Western/instrumentation , Chromatography, High Pressure Liquid/methods , Antimicrobial Cationic Peptides/agonists , A549 Cells/classification , Genes/genetics , Liver/abnormalities
6.
Microb Pathog ; 172: 105731, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36041710

ABSTRACT

Streptococcus pneumonia is classified as a gram-positive bacterial pathogen that causes asymptomatic or symptomatic respiratory infections. This study aimed to evaluate the effects of designed encapsulated saponin by ferritin nanoparticles in the healing progression of experimental bacterial pneumonia. The saponin encapsulated by ferritin followed the disassembly-reassembly process. Pneumonia was induced by the preparation of Streptococcus pneumonia. A total of 50 NMRI mice were divided into control, pneumonia, pneumonia + ferritin, pneumonia + saponin, and pneumonia + encapsulated saponin by ferritin nanoparticles (Nano Saponin) groups. ELISA, Real-time PCR, and Western blotting were used to measure sera IL-4 level, tumor necrosis factor-alpha (Tnf-α), and protein cyclooxygenase-2 (COX-2) gene expression, respectively. COX-2 protein expression, Tnf-α gene expression, and serum levels of IL-4 reduced compared to the pneumonia group. The histopathology results revealed that the rates of inflammation, mucus secretion, pulmonary hemorrhage, thickening of the alveoli wall, and secretion of inflammatory cells were lower in the Nano Saponin group than in the other groups. This study suggests that Glycyrrhiza glabra saponin and encapsulated saponin by ferritin nanoparticles oral consumption with anti-Tnf-α effect besides decreasing protein expression of COX-2 allows mice with pneumonia to recover.


Subject(s)
Nanoparticles , Pneumonia, Pneumococcal , Pneumonia , Saponins , Mice , Animals , Pneumonia, Pneumococcal/drug therapy , Cyclooxygenase 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ferritins , Interleukin-4/metabolism , Tumor Necrosis Factor Inhibitors , Pneumonia/pathology
7.
J Matern Fetal Neonatal Med ; 35(20): 3845-3852, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33349080

ABSTRACT

OBJECTIVE: Nowadays, one of the issues that matter in infertility is abortion or teratogenicity of embryos, followed by environmental pollution. Additionally, the continuous use of pesticides as the requirements of modern agriculture can increase the number of released radicals, which ultimately affects cell membranes and cell death via apoptosis pathway. MATERIALS AND METHODS: NMRI mice were divided into 3 groups: (1) Chlorpyrifos received group, (2) DMSO received as the sham group, (3) Control group. The mice were mated and euthanized 10 days post gestation. The number of embryos, progesterone and estradiol hormones and the liver enzymes levels of mouse mothers were evaluated in each group. The apoptosis pathway genes (Bax and Bcl2) and protein expressions (Caspase3 and Caspase9) were evaluated in the embryos of each group by qPCR and immunohistochemistry staining, respectively. RESULTS: The number of embryos in the experimental group was significantly lower than from the other groups. The liver enzymes and hormone levels were higher in CPF induced mice in comparison to the others. The mRNA expression of Bax in the embryos was significantly higher in the CPF group compared to sham and control groups. Caspase3 and Caspase9 protein expression revealed a higher rate of apoptosis in CPF group embryos. CONCLUSIONS: Continuous use of Chlorpyrifos can be regarded as having a negative effect on pregnancy as well as raising the mechanism of apoptosis in the development of embryos that may contribute to abortion or the birth of teratogenic disorders embryos.


Subject(s)
Chlorpyrifos , Insecticides , Animals , Apoptosis/drug effects , Chlorpyrifos/toxicity , Female , Insecticides/toxicity , Maternal Exposure/adverse effects , Mice , Organogenesis , Pregnancy , bcl-2-Associated X Protein/pharmacology
8.
Curr Microbiol ; 78(4): 1602-1614, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33687512

ABSTRACT

Outer membrane vesicles (OMVs) are nanosized spherical blebs derived from the outer membrane of gram-negative bacteria. Outer membrane vesicles (OMVs) play important roles in various physiological functions of bacteria. They can be applied as native vaccines or vaccine adjuvants. The objective of this study was to determine the appropriate growth phase and isolation method for OMV separation from ClearColi™, an endotoxin-free strain of E. coli. It was demonstrated that the yield of OMVs is increased while the bacteria are growing. Herein, although total protein concentration of OMVs isolated from the stationary phase is more than other phases; the pre-stationary phase was selected for OMV isolation due to release of smaller size of OMVs as compared to other phases. In the current study, to obtain OMVs with high yield, proper size, and homogeneity, different concentration methods including protein precipitation by ammonium sulfate (AS) and ultrafiltration (UF) were combined to ultracentrifugation (UC) or precipitation-based exosome isolation kit. Among the examined isolation methods, AS (70%) + UC resulted in the highest yield of OMVs. The TEM results demonstrated bilayer round-shaped OMVs isolated by this method. Although AS (70%) + kit resulted in more heterogeneous in size and larger OMVs as compared to AS (70%) + UC, it is applicable when high yield of OMVs is required and UC is not available. Totally, isolation of ClearColi™ OMVs from pre-stationary phase using AS (70%) + UC with enhanced yield can be applied in vaccine research studies.


Subject(s)
Bacterial Outer Membrane Proteins , Escherichia coli , Gram-Negative Bacteria
9.
Res Vet Sci ; 132: 186-193, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32593863

ABSTRACT

1, 25-dihydroxycholecalciferol is recognized as a potent immune-modulator which can fight against the pathogens via the activation of vitamin D3 receptors (VDRs), as well as stimulating various cytokines in infectious diseases. In the present study, because of the vitamin D3 has an appropriate immunomodulatory, the effects of this vitamin on the levels of pre-inflammatory and anti-inflammatory cytokines have been investigated in calves with experimental pasteurellosis. This study was experimentally carried out on 10 Holstein crossbred male calves (2-4 months) that were divided into two groups. Prepared Pasteurella multocida (3 × 109 CFU/mL) was inoculated in the trachea with a lavage catheter and then the treatment group was injected with 1, 25-dihydroxycholecalciferol after confirming pneumonia. Blood sampling, clinical symptoms scoring and radiological evaluation were recorded for both groups at different time intervals. The prescription of, vitamin D3 to the treatment group caused a decline in clinical symptoms score and changed interstitial and alveolo-interstitial lung pattern to such a degree that it could recover in comparison with the control group. The concentrations of pro-inflammatory cytokines (i.e., IL-1ß, IL-6, and TNF-α) and the chemokine (IL-8) showed a significant decrease in the treatment group while the concentration of IL-10 increased in the treatment groups following the vitamin D3 injection (P = .001). The evidence from the current study suggests that vitamin D3 exert the immunomodulatory effects in infectious diseases through the regulation of cytokines and activation of VDR pathways to produce antimicrobial peptides.


Subject(s)
Anti-Bacterial Agents/pharmacology , Calcitriol/pharmacology , Cattle Diseases/drug therapy , Cytokines/drug effects , Immunologic Factors/pharmacology , Pasteurella Infections/veterinary , Pasteurella multocida/drug effects , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/microbiology , Male , Pasteurella Infections/drug therapy , Pasteurella Infections/immunology , Pasteurella Infections/microbiology , Vitamins/pharmacology
10.
Int Immunopharmacol ; 85: 106554, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32447218

ABSTRACT

Chitosan Nanoparticles Eugenol recognizes as a potent antioxidant that can use the first therapeutic chemical to treat rheumatoid arthritis (RA) instead of Methotrexate. The purpose of this study was to investigate the effects of Chitosan Nanoparticles Eugenol as a potent Nano-herbal agent in the healing process of experimental neonatal RA compared to Methotrexate. The neonatal Wistar rats induced rheumatoid arthritis in both genders were divided into sham, control, the treatment receiving Methotrexate, and the second treatment receiving encapsulated Eugenol by Chitosan Nanoparticles groups. Afterward, Malondialdehyde, for assessment of lipid peroxidation as an oxidative stress biomarker by assay kit, FOXO3 protein as an antioxidant up-regulating by western blotting and expression of the TGF-ß and CCL2/MCP-1 genes by real-time PCR evaluation, supported by a cartilage histopathology analysis. Based on these results, Methotrexate and Eugenol encapsulated by Chitosan Nanoparticles, a significant decrease is observed in the serum level of MDA and FOXO3 protein expression in comparison to the control group. Additionally, Nanoparticle herbal agent and Methotrexate has a decreasing effect on the expression of TGF-ß and MCP-1 genes and a significant positive correlation was observed between MCP-1 and TGF-ß. Inflammation, synovial hyperplasia, and pannus formation were extreme in the Collagen Induced Arthritis rats. It can be concluded that Encapsulated Eugenol by Chitosan Nanoparticles and Methotrexate, probably by dint of their immunomodulatory, anti-inflammatory, and antioxidant potential has a protective effect against RA. Nano Eugenol is capable of delivering promising lines results to treat autoimmune diseases such as RA can also be suggested.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antioxidants/administration & dosage , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Chitosan/administration & dosage , Drug Carriers/administration & dosage , Eugenol/administration & dosage , Nanoparticles/administration & dosage , Animals , Animals, Newborn , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Malondialdehyde/blood , Methotrexate/administration & dosage , Rats, Wistar , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
11.
Environ Sci Pollut Res Int ; 27(23): 29530-29538, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32440878

ABSTRACT

Chlorpyrifos (CPF), as a worldwide pesticide, can effect on the integrins αv and ß3 which play a main role in the implantation window. Therefore, the aim of this study was to consider CPF effects on integrin alpha v and beta 3 in implantation window phase. Thirty female NMRI mice were separated into groups of CPF, sham, and control. After 6 weeks, each group was mated, and on the 5th day of gestation, all mice were euthanized. Estradiol and progesterone levels were detected by the enzyme-linked immunosorbent assay (ELISA) test; two subunits of integrins (αv and ß3) genes and proteins of endometrium were analyzed by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry method, respectively. Fibrosis of the liver which evaluated by Masson's trichrome stain was increased in the CPF group compared with the others. But estradiol and progesterone levels were significantly decreased in CPF groups. Based on the findings, the proportion of genes' expressions of integrin subunits declined by the effect of CPF, while there was not any notable consequence on mice in the sham group. Alpha v and beta 3 integrin proteins expressed in all groups, but the concentration of these proteins in CPF groups was lower than in other groups. This study has shown that the decline of estradiol and progesterone downregulates the expression of αv and ß3 integrins which were influenced by CPF exposure. Changing these patterns of proteins could have numerous influences on unsuccessful implantation. Therefore, this experimental study recommends that inclusive consideration of the effects of insecticides may be crucial to women's unrecognized cause of infertility.


Subject(s)
Chlorpyrifos , Insecticides , Integrin alphaV , Integrin beta3 , Animals , Chlorpyrifos/toxicity , Embryo Implantation , Endometrium , Female , Humans , Mice , Progesterone
12.
Environ Toxicol ; 35(7): 794-803, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32149475

ABSTRACT

The continued use of pesticides is one of the requirements of modern agriculture. Investigations have shown that pesticides can alter gene methylation and expression and subsequently may lead to abortion or birth of embryos with teratogenic disorders. In present study, 30 female NMRI mouse were divided in three experimental groups which in the CPF group, intraperitoneal chlorpyrifos was injected, in the sham group, DMSO was injected, and the control group without injection. The mice were mated and utinized 10 days' post gestation. The number of embryos in each fertilized female, maternal weight, and liver fibrosis was evaluated. The apoptosis pathway genes (caspase3, caspase9) and protein expressions (pro-caspase3, caspase3) of the embryos were evaluated with qRT-PCR and western blot, respectively. The DNA methylation of caspase3 and caspase9 were also assessed. The number of embryos and obtained maternal weight from the CPF group was significantly lower than other two groups. The mRNA expression of Caspase3 and Caspase9 were significantly higher in the CPF group. The protein expression evaluation confirmed the results achieved at the mRNA level. The percentage of Caspase9 DNA methylation in embryos collected from the CPF group was higher compared to the others. It can be considered that consumption of chlorpyrifos toxin can alter the DNA methylation and increase the expression of apoptotic genes. Therefore, continuous use of chlopyrifos may affect pregnancy by increasing the apoptosis pathway in the developing embryos which may lead to abortion or teratogenic disorders in newborn infants.


Subject(s)
Apoptosis/genetics , Chlorpyrifos/toxicity , DNA Methylation/drug effects , Embryonic Development/genetics , Maternal Exposure/adverse effects , Organogenesis/genetics , Animals , Apoptosis/drug effects , Caspase 3/genetics , Caspase 9/genetics , Embryonic Development/drug effects , Female , Mice , Organogenesis/drug effects , Pesticides/toxicity , Pregnancy , RNA, Messenger/metabolism , Teratogens/toxicity
13.
Asian Pac J Trop Med ; 7S1: S14-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25312109

ABSTRACT

Parasitic diseases cause annual mortality of more than 200 thousand people. Currently many drugs are used to treat parasitic diseases; however, they are mostly expensive, toxic, with side effects and drug resistance. Medicinal plants have been shown to represent natural source of cheap drugs with low toxicity. In this review article, the most common and most effective herbal medicines on pathogenic protozoan Sarcomastigophora branches such as Trypanosoma, Leishmania, Amoeba, Trichomonas and Giardia were reviewed. The recently published papers about different drugs as well as herbal medicines as alternative for synthetic drugs were searched using scientific sites such as Medline, PubMed and Google Scholar. The used terms included: Medicinal plants, herbal medicine, protozoa, Trypanosoma, Sarcomastigophora branches, Leishmania, Amoeba, Trichomonas or Giardia.

14.
Comp Clin Path ; 22(3): 403-407, 2013 May.
Article in English | MEDLINE | ID: mdl-23667351

ABSTRACT

This paper describes a selection of the ethnoveterinary medicines used for herd dogs in the southern regions of Ilam province, Iran. Traditional botanical medicine is the primary mode of healthcare for most of the rural population in Ilam province. In this study, a questionnaire was distributed among 45 residential areas in 22 rural zones of the southern areas of Ilam province. The objective of this study was the recognition of natural medicinal methods using medicinal plants, and the classification of ethnoveterinary applications and collection of domestic science. Twenty-two medicinal plants from 16 families were identified. The main application of these plants was for the detection and treatment of digestive disorders using Citrullus colocynthis, Aristolochia clematis, Scrophularia deserti, Quercus brantii, Ceracus microcarpa, Echium strigosa, Pistacia atlantica, and Pistacia khinjuk which have been applied using Euphurbia graminifolius, Peganum harmala, Salsola rigida, Artemisia herba-alba, Amygdalus arabica, jolbak of salt water, Peganum harmala L., and Nicotina tabacum for external and internal parasite disorders. S. deserti for ophthalmic disorders, and P. atlantica, P. khinjuk, and Q. brantii for respiratory disorders were applied. The present study confirmed the traditional medical effects of some plants and revealed the unique medical effects of other plants, which if recognized could be useful in the creation of new ideas and increasing knowledge for the modern pharmaceutical industry. Since very few clinical trials have been conducted on plants native to Ilam province, it is necessary that more research be conducted to ensure that labeled and standardized products are introduced for human consumption.

15.
Comp Clin Path ; 21(6): 1445-1449, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23205003

ABSTRACT

Peritonitis is an inflammation of the peritoneal cavity and is one of the main causes of animal deaths. It has been reported that many diseases such as peritonitis cause electrolyte imbalance in the body. The present study has been conducted to evaluate the serum electrolyte concentration in cattle with peritonitis. In order to perform this study, 45 cattle with peritonitis were selected in the Karaj area, and 20 healthy cattle were used as the control group. After diagnosis of peritonitis in the infected cattle, 10-ml blood samples were taken from the jugular vein, the concentrations of calcium, phosphorus, magnesium, and chloride were estimated using the spectrophotometric method, and sodium and potassium concentrations were assessed by a flame photometer device. The results showed that the concentrations of calcium, magnesium, sodium, potassium, and chloride in cattle affected with peritonitis were reduced compared with the control group, but the differences were not statistically significant. The concentration of phosphorus in the peritonitis-infected cattle was significantly higher than in the healthy cattle. On the basis of the results of the present study, it can be concluded that inflammation of the peritoneal cavity in cattle causes blood electrolyte deterioration, and more attention needs to be focused on this factor in the treatment of infected animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...