Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 12(7): 3007-3023, 2022.
Article in English | MEDLINE | ID: mdl-35547760

ABSTRACT

Objective: Vascular dementia (VaD) is the second most common cause of dementia worldwide. The increasing contribution of lifestyle-associated risk factors to VaD has pointed towards gene-environment interactions (i.e. epigenetics). This study thus aims to investigate the DNA methylation landscape in a chronic cerebral hypoperfusion (CCH) mouse model of VaD. As a nexus between the gene-environment interaction, intermittent fasting (IF) was introduced as a prophylactic intervention. Methods: Bilateral common carotid artery stenosis (BCAS) was used to induce CCH by placing micro-coils of 0.18 mm in each common carotid artery of the mice. The coils were left in the mice for 7, 15 and 30 days to study temporal differences. IF was introduced for 16 h daily for 4 months prior to BCAS. Reduced Representation Bisulfite Sequencing (RRBS) was used to study the DNA methylation landscape. Cognitive impairment was measured using Barnes Maze Test. White matter lesions (WML) and neuronal loss were measured using Luxol fast blue staining and cresyl violet staining respectively. Results: IF mice subjected to CCH displayed significantly better cognitive learning ability and memory, improved neuropathological alterations with reduced WMLs and neuronal loss. Modulation of DNA methylation patterns in the cortex of AL CCH mice was re-modelled and signs of reversal was observed in IF CCH mice across all three timepoints. Conclusions: These findings provide an understanding of how IF may protect the brain against damage caused by CCH and show promise in offering potential beneficial effects in mitigating the neuropathology and cognitive deficits in VaD.


Subject(s)
Brain Ischemia , Carotid Stenosis , Cognitive Dysfunction , Dementia, Vascular , Animals , Brain Ischemia/complications , Carotid Stenosis/complications , Cerebrovascular Circulation/physiology , Cognitive Dysfunction/pathology , DNA Methylation , Disease Models, Animal , Fasting , Maze Learning , Mice
2.
J Mol Cell Cardiol ; 160: 15-26, 2021 11.
Article in English | MEDLINE | ID: mdl-34146546

ABSTRACT

AIMS: Direct cardiac reprogramming represents an attractive way to reversing heart damage caused by myocardial infarction because it removes fibroblasts, while also generating new functional cardiomyocytes. Yet, the main hurdle for bringing this technique to the clinic is the lack of efficacy with current reprogramming protocols. Here, we describe our unexpected discovery that DMSO is capable of significantly augmenting direct cardiac reprogramming in vitro. METHODS AND RESULTS: Upon induction with cardiac transcription factors- Gata4, Hand2, Mef2c and Tbx5 (GHMT), the treatment of mouse embryonic fibroblasts (MEFs) with 1% DMSO induced ~5 fold increase in Myh6-mCherry+ cells, and significantly upregulated global expression of cardiac genes, including Myh6, Ttn, Nppa, Myh7 and Ryr2. RNA-seq confirmed upregulation of cardiac gene programmes and downregulation of extracellular matrix-related genes. Treatment of TGF-ß1, DMSO, or SB431542, and the combination thereof, revealed that DMSO most likely targets a separate but parallel pathway other than TGF-ß signalling. Subsequent experiments using small molecule screening revealed that DMSO enhances direct cardiac reprogramming through inhibition of the CBP/p300 bromodomain, and not its acetyltransferase property. CONCLUSION: In conclusion, our work points to a direct molecular target of DMSO, which can be used for augmenting GHMT-induced direct cardiac reprogramming and possibly other cell fate conversion processes.


Subject(s)
Cellular Reprogramming/drug effects , Dimethyl Sulfoxide/pharmacology , Fibroblasts/cytology , Myocytes, Cardiac/cytology , Protein Domains/drug effects , Signal Transduction/drug effects , p300-CBP Transcription Factors/chemistry , Animals , Benzamides/pharmacology , Cells, Cultured , Dioxoles/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Embryo, Mammalian/cytology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , GATA4 Transcription Factor/metabolism , Male , Mice , Mice, Transgenic , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Pregnancy , Transforming Growth Factor beta1/pharmacology , Up-Regulation/drug effects , Up-Regulation/genetics
3.
Circulation ; 142(15): 1408-1421, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32885678

ABSTRACT

BACKGROUND: Heart failure (HF) is the most common long-term complication of acute myocardial infarction (MI). Understanding plasma proteins associated with post-MI HF and their gene expression may identify new candidates for biomarker and drug target discovery. METHODS: We used aptamer-based affinity-capture plasma proteomics to measure 1305 plasma proteins at 1 month post-MI in a New Zealand cohort (CDCS [Coronary Disease Cohort Study]) including 181 patients post-MI who were subsequently hospitalized for HF in comparison with 250 patients post-MI who remained event free over a median follow-up of 4.9 years. We then correlated plasma proteins with left ventricular ejection fraction measured at 4 months post-MI and identified proteins potentially coregulated in post-MI HF using weighted gene co-expression network analysis. A Singapore cohort (IMMACULATE [Improving Outcomes in Myocardial Infarction through Reversal of Cardiac Remodelling]) of 223 patients post-MI, of which 33 patients were hospitalized for HF (median follow-up, 2.0 years), was used for further candidate enrichment of plasma proteins by using Fisher meta-analysis, resampling-based statistical testing, and machine learning. We then cross-referenced differentially expressed proteins with their differentially expressed genes from single-cell transcriptomes of nonmyocyte cardiac cells isolated from a murine MI model, and single-cell and single-nucleus transcriptomes of cardiac myocytes from murine HF models and human patients with HF. RESULTS: In the CDCS cohort, 212 differentially expressed plasma proteins were significantly associated with subsequent HF events. Of these, 96 correlated with left ventricular ejection fraction measured at 4 months post-MI. Weighted gene co-expression network analysis prioritized 63 of the 212 proteins that demonstrated significantly higher correlations among patients who developed post-MI HF in comparison with event-free controls (data set 1). Cross-cohort meta-analysis of the IMMACULATE cohort identified 36 plasma proteins associated with post-MI HF (data set 2), whereas single-cell transcriptomes identified 15 gene-protein candidates (data set 3). The majority of prioritized proteins were of matricellular origin. The 6 most highly enriched proteins that were common to all 3 data sets included well-established biomarkers of post-MI HF: N-terminal B-type natriuretic peptide and troponin T, and newly emergent biomarkers, angiopoietin-2, thrombospondin-2, latent transforming growth factor-ß binding protein-4, and follistatin-related protein-3, as well. CONCLUSIONS: Large-scale human plasma proteomics, cross-referenced to unbiased cardiac transcriptomics at single-cell resolution, prioritized protein candidates associated with post-MI HF for further mechanistic and clinical validation.


Subject(s)
Blood Proteins/biosynthesis , Gene Expression Profiling , Gene Expression Regulation , Heart Failure , Myocardial Infarction , Proteomics , Single-Cell Analysis , Aged , Aged, 80 and over , Animals , Female , Heart Failure/blood , Heart Failure/genetics , Humans , Male , Mice , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/complications
4.
Circulation ; 139(16): 1937-1956, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30717603

ABSTRACT

BACKGROUND: The human genome folds in 3 dimensions to form thousands of chromatin loops inside the nucleus, encasing genes and cis-regulatory elements for accurate gene expression control. Physical tethers of loops are anchored by the DNA-binding protein CTCF and the cohesin ring complex. Because heart failure is characterized by hallmark gene expression changes, it was recently reported that substantial CTCF-related chromatin reorganization underpins the myocardial stress-gene response, paralleled by chromatin domain boundary changes observed in CTCF knockout. METHODS: We undertook an independent and orthogonal analysis of chromatin organization with mouse pressure-overload model of myocardial stress (transverse aortic constriction) and cardiomyocyte-specific knockout of Ctcf. We also downloaded published data sets of similar cardiac mouse models and subjected them to independent reanalysis. RESULTS: We found that the cardiomyocyte chromatin architecture remains broadly stable in transverse aortic constriction hearts, whereas Ctcf knockout resulted in ≈99% abolition of global chromatin loops. Disease gene expression changes correlated instead with differential histone H3K27-acetylation enrichment at their respective proximal and distal interacting genomic enhancers confined within these static chromatin structures. Moreover, coregulated genes were mapped out as interconnected gene sets on the basis of their multigene 3D interactions. CONCLUSIONS: This work reveals a more stable genome-wide chromatin framework than previously described. Myocardial stress-gene transcription responds instead through H3K27-acetylation enhancer enrichment dynamics and gene networks of coregulation. Robust and intact CTCF looping is required for the induction of a rapid and accurate stress response.


Subject(s)
Aortic Valve Stenosis/genetics , CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Heart Failure/genetics , Myocytes, Cardiac/physiology , Acetylation , Animals , CCCTC-Binding Factor/genetics , Cells, Cultured , Chromatin Assembly and Disassembly , Disease Models, Animal , Epigenesis, Genetic , Gene Expression Regulation , Gene Ontology , Gene Regulatory Networks , Histones/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...