Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(4)2022 02 18.
Article in English | MEDLINE | ID: mdl-35203370

ABSTRACT

Adult neural stem cells (aNSCs) are the source for the continuous production of new neurons throughout life. This so-called adult neurogenesis has been extensively studied; the intermediate cellular stages are well documented. Recent discoveries have raised new controversies in the field, such as the notion that progenitor cells hold similar self-renewal potential as stem cells, or whether different types of aNSCs exist. Here, we discuss evidence for heterogeneity of aNSCs, including short-term and long-term self-renewing aNSCs, regional and temporal differences in aNSC function, and single cell transcriptomics. Reviewing various genetic mouse models used for targeting aNSCs and lineage tracing, we consider potential lineage relationships between Ascl1-, Gli1-, and Nestin-targeted aNSCs. We present a multidimensional model of adult neurogenesis that incorporates recent findings and conclude that stemness is a phenotype, a state of properties that can change with time, rather than a cell property, which is static and immutable. We argue that singular aNSCs do not exist.


Subject(s)
Adult Stem Cells , Neural Stem Cells , Animals , Mice , Neurogenesis/genetics , Neurons
2.
Cell Rep ; 36(8): 109588, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433050

ABSTRACT

Radial glia-like (RGL) stem cells persist in the adult mammalian hippocampus, where they generate new neurons and astrocytes throughout life. The process of adult neurogenesis is well documented, but cell-autonomous factors regulating neuronal and astroglial differentiation are incompletely understood. Here, we evaluate the functions of the transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) in adult hippocampal RGL cells using a conditional-inducible mouse model. We find that ZEB1 is necessary for self-renewal of active RGL cells. Genetic deletion of Zeb1 causes a shift toward symmetric cell division that consumes the RGL cell and generates pro-neuronal progenies, resulting in an increase of newborn neurons and a decrease of newly generated astrocytes. We identify ZEB1 as positive regulator of the ets-domain transcription factor ETV5 that is critical for asymmetric division.


Subject(s)
Cell Self Renewal/physiology , Hippocampus/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Cell Differentiation/genetics , Ependymoglial Cells/metabolism , Epithelial-Mesenchymal Transition/physiology , Hippocampus/drug effects , Humans , Mice , Neurogenesis/physiology , Neurons/metabolism
3.
Nucleic Acids Res ; 45(7): 3875-3887, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28160601

ABSTRACT

The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood. In this work, we define a minimal RNA polymerase interaction domain in PcrA, and report its crystal structure at 1.5 Å resolution. The domain adopts a Tudor-like fold that is similar to other RNA polymerase interaction domains, including that of the prototype transcription-repair coupling factor Mfd. Removal or mutation of the interaction domain reduces the ability of PcrA/UvrD to interact with and to remodel RNA polymerase complexes in vitro. The implications of this work for our understanding of the role of PcrA/UvrD at the interface of DNA replication, transcription and repair are discussed.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA-Directed RNA Polymerases/metabolism , Amino Acids/chemistry , Geobacillus stearothermophilus/enzymology , Models, Molecular , Protein Binding , Transcription Elongation, Genetic , Tudor Domain
SELECTION OF CITATIONS
SEARCH DETAIL
...