Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Radiat Environ Biophys ; 62(3): 317-329, 2023 08.
Article in English | MEDLINE | ID: mdl-37296237

ABSTRACT

A significant source of information on radiation-induced biological effects following in-utero irradiation stems from studies of atomic bomb survivors who were pregnant at the time of exposure in Hiroshima, and to a lesser extent, from survivors in Nagasaki. Dose estimates to the developing fetus for these survivors have been assigned in prior dosimetry systems of the Radiation Effects Research Foundation as the dose to the uterine wall within the non-pregnant adult stylized phantom, originally designed for the dosimetry system DS86 and then carried forward in DS02. In a prior study, a new J45 (Japanese 1945) series of high-resolution phantoms of the adult pregnant female at 8 weeks, 15 weeks, 25 weeks, and 38-weeks post-conception was presented. Fetal and maternal organ doses were estimated by computationally exposing the pregnant female phantom series to DS02 free-in-air cumulative photon and neutron fluences at three distances from the hypocenter at both Hiroshima and Nagasaki under idealized frontal (AP) and isotropic (ISO) particle incidence. In this present study, this work was extended using realistic angular fluences (480 directions) from the DS02 system for seven radiation source terms, nine different radiation dose components, and five shielding conditions. In addition, to explore the effects of fetal position within the womb, four new phantoms were created and the same irradiation scenarios were performed. General findings are that the current DS02 fetal dose surrogate overestimates values of fetal organ dose seen in the J45 phantoms towards the cranial end of the fetus, especially in the later stages of pregnancy. For example, for in-open exposures at 1000 m in Hiroshima, the ratio of J45 fetal brain dose to DS02 uterine wall dose is 0.90, 0.82, and 0.70 at 15 weeks, 25 weeks, and 38-weeks, respectively, for total gamma exposures, and are 0.64, 0.44, and 0.37 at these same gestational ages for total neutron exposures. For organs in the abdominal and pelvic regions of the fetus, dose gradients across gestational age flatten and later reverse, so that DS02 fetal dosimetry begins to underestimate values of fetal organ dose as seen in the J45 phantoms. For example, for the same exposure scenario, the ratios of J45 fetal kidney dose to DS02 uterine wall dose are about 1.09 from 15 to 38 weeks for total gamma dose, and are 1.30, 1.56, and 1.75 at 15 weeks, 25 weeks, and 38 weeks, respectively, for the total neutron dose. Results using the new fetal positioning phantoms show this trend reversing for a head-up, breach fetal position. This work supports previous findings that the J45 pregnant female phantom series offers significant opportunities for gestational age-dependent assessment of fetal organ dose without the need to invoke the uterine wall as a fetal organ surrogate.


Subject(s)
Nuclear Warfare , Radiation Injuries , Adult , Female , Humans , Pregnancy , Atomic Bomb Survivors , Radiometry/methods , Survivors , Fetus , Japan
2.
Health Phys ; 125(4): 245-259, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37358430

ABSTRACT

ABSTRACT: Organ dosimetry data of the atomic bomb survivors and the resulting cancer risk models derived from these data are currently assessed within the DS02 dosimetry system developed through the Joint US-Japan Dosimetry Working Group. In DS02, the anatomical survivor models are limited to three hermaphroditic stylized phantoms-an adult (55 kg), a child (19.8 kg), and an infant (9.7 kg)-that were originally designed for the preceding DS86 dosimetry system. As such, organ doses needed for assessment of in-utero cancer risks to the fetus have continued to rely upon the use of the uterine wall in the adult non-pregnant stylized phantom as the dose surrogate for all fetal organs regardless of gestational age. To address these limitations, the Radiation Effects Research Foundation (RERF) Working Group on Organ Dose (WGOD) has established the J45 (Japan 1945) series of high-resolution voxel phantoms, which were derived from the UF/NCI series of hybrid phantoms and scaled to match mid-1940s Japanese body morphometries. The series includes male and female phantoms-newborn to adult-and four pregnant female phantoms at gestational ages of 8, 15, 25, and 38 wk post-conception. In previous studies, we have reported organ dose differences between those reported by the DS02 system and those computed by the WGOD using 3D Monte Carlo radiation transport simulations of atomic bomb gamma-ray and neutron fields for the J45 phantoms series in their traditional "standing" posture, with some variations in their facing direction relative to the bomb hypocenter. In this present study, we present the J45 pregnant female phantoms in both a "kneeling" and "lying" posture and assess the dosimetric impact of these more anatomically realistic survivor models in comparison to current organ doses given by the DS02 system. For the kneeling phantoms facing the bomb hypocenter, organ doses from bomb source photon spectra were shown to be overestimated by the DS02 system by up to a factor of 1.45 for certain fetal organs and up to a factor of 1.17 for maternal organs. For lying phantoms with their feet in the direction of the hypocenter, fetal organ doses from bomb source photon spectra were underestimated by the DS02 system by factors as low as 0.77, while maternal organ doses were overestimated by up to a factor of 1.38. Organs doses from neutron contributions to the radiation fields exhibited an increasing overestimation by the DS02 stylized phantoms as gestational age increased. These discrepancies are most evident in fetal organs that are more posterior within the mother's womb, such as the fetal brain. Further analysis revealed that comparison of these postures to the original standing posture indicate significant dose differences for both maternal and fetal organ doses depending on the type of irradiation. Results from this study highlight the degree to which the existing DS02 system can differ from organ dosimetry based upon 3D radiation transport simulations using more anatomically realistic models of those survivors exposed during pregnancy.


Subject(s)
Atomic Bomb Survivors , Radiation Injuries , Infant, Newborn , Child , Adult , Pregnancy , Humans , Male , Female , Radiometry/methods , Fetus/radiation effects , Posture
3.
Radiat Res ; 194(4): 390-402, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33045092

ABSTRACT

Owing to recent advances in computational dosimetry tools, an update is warranted for the dosimetry system for atomic bomb survivors that was established by the Joint U.S.Japan Working Group on the Reassessment of Atomic Bomb Dosimetry in 2002 (DS02). The DS02 system, and its predecessor, DS86, at the Radiation Effects Research Foundation (RERF), are based on adjoint Monte Carlo particle transport simulations coupled with stylized computational human phantoms. In our previous studies, we developed the J45 series of computational voxel phantoms representative of 1945 Japanese adults, children and pregnant females. The dosimetric impact of replacing the DS02/DS86 stylized phantoms by the J45 phantom series was also discussed through computation of organ doses for several idealized exposure scenarios. In the current study, we investigated the possible impact of introducing not only the J45 phantom series but also various methodological upgrades to the DS02 dosimetry system. For this purpose, we calculated organ doses in adults for 12 representative exposure scenarios having realistic particle energy and angular fluence, using different combinations of phantoms and dose calculation methods. Those doses were compared with survivor organ doses given by the DS02 system. It was found that the anatomical improvement in the J45 phantom series is the most important factor leading to potential changes in survivor organ doses. However, methodological upgrades, such as replacement of the adjoint Monte Carlo simulation with kerma approximation by the forward Monte Carlo simulation with secondary electron transport, can also improve the accuracy of organ doses by up to several percent.In addition, this study established a series of response functions, which allows for the rapid conversion of the unidirectional quasi-monoenergetic photon and neutron fluences from the existing DS02 system to organ doses within the J45 adult phantoms. The overall impact of introducing the response functions in the dosimetry system is not so significant, less than 10% in most cases, except for organs in which the calculation method or definition was changed, e.g., colon and bone marrow. This system of response functions can be implemented within a revision to the DS02 dosimetry system and used for future updates to organ doses within the Life Span Study of the atomic bomb survivors.


Subject(s)
Atomic Bomb Survivors , Computer Simulation , Dose-Response Relationship, Radiation , Models, Biological , Organs at Risk/radiation effects , Phantoms, Imaging , Absorption, Radiation , Adult , Female , Follow-Up Studies , Humans , Japan , Male , Monte Carlo Method , Neutrons , Organ Specificity , Photons , Radiation Exposure , Radiation Injuries , Radiation Protection , Radiometry/instrumentation , Radiometry/methods
4.
Radiat Res ; 192(5): 538-561, 2019 11.
Article in English | MEDLINE | ID: mdl-31469615

ABSTRACT

An important cohort of the atomic bomb survivors are women who were pregnant when exposed to the photon and neutron fields at both Hiroshima and Nagasaki, as well as their children who were exposed in utero. Estimates of organ dose to the developing fetus allow for the development of dose-dependent and gestational age-dependent models of deterministic (e.g., organ malformation) and stochastic (e.g., leukemia) risk of in utero exposure. To date, both the 1986 and 2002 dosimetry systems at the Radiation Effects Research Foundation have utilized the uterine wall in the non-pregnant adult female as a dose surrogate for individual fetal organs and tissues. Here we present a new J45 (Japanese 1945) series of high-resolution phantoms of the adult pregnant female at 8-, 15-, 25- and 38-weeks post-conception. These models, which were derived from the University of Florida (UF) series of ICRP Publication 89 compliant reference phantoms, have been rescaled to approximate the pregnant mother using 1945 Japanese morphometry data. Fetal and maternal organ doses were estimated by computationally exposing the pregnant female phantom series to DS02 free-in-air photon and neutron fluences at three distances from the hypocenter at both Hiroshima and Nagasaki under frontal (AP) and isotropic (ISO) particle incidence. As for the fetal organ doses, our results indicate that the uterine wall of the non-pregnant female generally underestimates fetal organ dose within the pregnant female. The magnitude of these differences varies with both radiation type and irradiation geometry, with the smallest differences (5-7%) seen for ISO photon fields and the largest differences (20-30%) seen for AP neutron fields. Significant discrepancies were seen in fetal brain dose and its uterine wall surrogate, particularly for photon AP fields (ratio of uterine wall to brain dose varied from 0.9 to 1.3) and neutron AP fields (dose ratios from 0.75 to 2.0). As for the maternal organ doses, the use of organ doses in a non-pregnant female was shown, in general, to overestimate the corresponding organ doses in the pregnant female, with greater deviations seen at later stages of pregnancy (12-16% for AP photons and 44-53% for AP neutrons). The one exception was the uterine wall dose in pregnancy which was seen to be underestimated by that in the non-pregnant female phantom, particularly for ISO and AP neutron fields. These results demonstrate that the J45 pregnant female phantom series offers the opportunity for significant improvements in both fetal and maternal organ dose assessment within this unique cohort of the atomic bomb survivors.


Subject(s)
Atomic Bomb Survivors , Fetus/radiation effects , Phantoms, Imaging , Radiometry/methods , Anthropometry , Female , Humans , Japan , Maternal Exposure , Monte Carlo Method , Neutrons , Nuclear Weapons , Photons , Pregnancy , Radiation Dosage , Radiation Injuries
5.
Health Phys ; 109(6): 582-600, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26509626

ABSTRACT

Groups of Japanese and American scientists, supported by international collaborators, have worked for many years to ensure the accuracy of the radiation dosimetry used in studies of health effects in the Japanese atomic bomb survivors. Reliable dosimetric models and systems are especially critical to epidemiologic studies of this population because of their importance in the development of worldwide radiation protection standards. While dosimetry systems, such as Dosimetry System 1986 (DS86) and Dosimetry System 2002 (DS02), have improved, the research groups that developed them were unable to propose or confirm an additional contribution by residual radiation to the survivor's total body dose. In recognition of the need for an up-to-date review of residual radiation exposures in Hiroshima and Nagasaki, a half-day technical session was held for reports on newer studies at the 59 th Annual HPS Meeting in 2014 in Baltimore, MD. A day-and-a-half workshop was also held to provide time for detailed discussion of the newer studies and to evaluate their potential use in clarifying the residual radiation exposure to atomic bomb survivors at Hiroshima and Nagasaki. The process also involved a re-examination of very early surveys of radioisotope emissions from ground surfaces at Hiroshima and Nagasaki and early reports of health effects. New insights were reported on the potential contribution to residual radiation from neutron-activated radionuclides in the airburst's dust stem and pedestal and in unlofted soil, as well as from fission products and weapon debris from the nuclear cloud. However, disparate views remain concerning the actual residual radiation doses received by the atomic bomb survivors at different distances from the hypocenter. The workshop discussion indicated that measurements made using thermal luminescence and optically stimulated luminescence, like earlier measurements, especially in very thin layers of the samples, could be expanded to detect possible radiation exposures to beta particles and to determine their significance plus the extent of the various residual radiation areas at Hiroshima and Nagasaki. Other suggestions for future residual radiation studies are included in this workshop report.


Subject(s)
Nuclear Warfare , Nuclear Weapons , Radiation Exposure , Beta Particles , Gamma Rays , Humans , Japan/epidemiology , Luminescent Measurements , Radiation Exposure/statistics & numerical data , Radiation Monitoring , Radiometry/methods , Soil , Survivors/statistics & numerical data
6.
Health Phys ; 105(2): 140-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23799498

ABSTRACT

There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.


Subject(s)
Environmental Exposure/statistics & numerical data , Nuclear Weapons , Radiobiology/statistics & numerical data , Research Report , Cities/statistics & numerical data , Humans , Japan , Life Expectancy , Nuclear Weapons/statistics & numerical data , Radiation Monitoring , Radioactive Fallout/analysis , Radioisotopes/analysis , Radiometry , Risk , Spatio-Temporal Analysis , Survivors/statistics & numerical data
7.
Radiat Environ Biophys ; 51(2): 113-31, 2012 May.
Article in English | MEDLINE | ID: mdl-22421931

ABSTRACT

In certain Hiroshima neighborhoods, radiation measurements using thermoluminescence dosimetry (TLD) exceed what can be explained by the initial gamma-ray doses and uncertainties from the Dosimetry System 2002 (DS02). This problem was not previously recognized as being isolated to certain parts of that city. The ratio between TLD measurements and DS02 dose calculations for gamma rays appear to grow larger than unity up to more than three with increasing ground range, but closer examination shows the excess TLD dose (0.1, 0.2, or possibly up to 0.8 Gray) is correlated with certain neighborhoods and could be due to radioactive fallout. At Nagasaki, the TLD measurements do not show this same excess, probably because there were no TLD measurements taken more than 800 m downwind (eastward) from the Nagasaki hypocenter, so that any small excess TLD dose was masked by larger initial gamma-ray doses of 25-80 Gray in the few downwind samples. The DS02 Report had noted many measurements lower than the DS02 calculation for several Nagasaki TLD samples, independent of ground range. This was explained as being the result of previously unaccounted urban shielding which was observed from Nagasaki pre-bomb aerial photos. However, the Hiroshima excess TLD dose issue was not resolved. If the excess TLD doses at Hiroshima are an indication of fallout, it may be possible to use additional TLD studies to make better estimates of the locations and radiation doses to survivors from the fallout after the bombings at both cities.


Subject(s)
Gamma Rays , Nuclear Warfare , Radioactive Fallout/analysis , Thermoluminescent Dosimetry/methods , Humans , Japan , Nuclear Weapons , Radiation Dosage , Radiation Monitoring/methods
8.
Radiat Prot Dosimetry ; 149(1): 21-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21778157

ABSTRACT

The A bomb dosimetry system (DS) calculates each survivor's organ doses. It does this by calculating the angular fluences incident on each survivor. These are used with humanoid phantom shielding calculations to estimate organ doses in 15 organs, 3-sized phantoms, 2 sexes and 2 postures at any orientation or distance to the bomb. The DS has been re-used and updated several times. Currently, efforts are being considered to include shielding for additional organs by adding additional phantoms. The DS has gone through a series of upgrades referred to as: DS84, DS86, DS86R, DS93, DS02. DS86 and DS02 were approved and installed at Radiation Effects Research Foundation. The system uses free-field energy-angular fluence from a discrete ordinate calculation coupled with Monte Carlo adjoint-shielding histories. This paper briefly discusses the adjoint Monte Carlo; combinatorial shield geometry for the phantom, house, factory, and terrain; modifications to use fictitious scattering in voxel phantoms; the adjoint source energy, angle and location distribution; 'leakage histories' and their optimisation for dose or fluence; doubly differential (energy-angle) coupling for single-, double-, or triple-shielding coupling; output of various components of dose and energy-angular fluences; survivor-specific inputs; organ dose uncertainty; and testing, benchmarking and extended applications. Also, approaches to add additional organ-shielding calculations to DS02 are discussed.


Subject(s)
Nuclear Warfare , Organ Specificity/radiation effects , Radiometry , Body Burden , Humans , Monte Carlo Method , Neutrons , Phantoms, Imaging , Survivors
9.
Radiat Environ Biophys ; 46(4): 311-25, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17643260

ABSTRACT

Fluence spectra at several ground distances in Hiroshima and Nagasaki are provided along with associated fluence-to-kerma coefficients from the Dosimetry System 2002 (DS02). Also included are transmission factors for calculating expected responses of in situ sample measurements of neutron activation products such as (32)P,(36)Cl,(39)Ar,(41)Ca, (60)Co,(63)Ni,(152)Eu, and (154)Eu. The free-in-air (FIA) fluences calculated in 2002 are available for 240 angles, 69 energy groups, 101 ground distances, 5 heights, 4 radiation source components, 2 cities. The DS02 code uses these fluences partitioned to a prompt and delayed portion, collapsed to 58 energy groups and restricted to 97 ground distances. This is because the fluence spectra were required to be in the same format that was used in the older Dosimetry System 1986 (DS86) computer code, of which the DS02 computer code is a modification. The 2002 calculation fluences and the collapsed DS02 code fluences are presented and briefly discussed. A report on DS02, which is available on the website at the Radiation Effects Research Foundation, provides tables and figures of the A-bomb neutron and gamma-ray output used as the sources in the 2002 radiation transport calculations. While figures illustrating the fluence spectra at several ground ranges are presented in the DS02 Report, it does not include any tables of the calculated fluence spectra in the DS02 report. This paper provides, at several standard distances from the hypocenter, the numerical information which is required to translate the FIA neutron fluences given in DS02 to a neutron activation measurement or neutron and gamma-ray soft-tissue dose.


Subject(s)
Body Burden , Gamma Rays , Neutrons , Radiation Monitoring/methods , Radioactive Fallout/analysis , Radioactive Fallout/statistics & numerical data , Risk Assessment/methods , Cities/statistics & numerical data , Humans , Japan , Nuclear Warfare , Radiation Dosage , Relative Biological Effectiveness , Risk Factors , Spectrum Analysis/methods
10.
Radiat Environ Biophys ; 44(4): 261-71, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16429279

ABSTRACT

The survivors of the A-bomb explosions over Hiroshima and Nagasaki were exposed to a mixed neutron and gamma radiation field. To validate the high-energy portion of the neutron field and thus the neutron dose to the survivors, a method is described that allows retrospective assessment of the fast neutrons from the A-bombs. This is accomplished by the extraction of the noble gas argon from biotites separated from Hiroshima granite samples, and then the detection of the (39)Ar activity that was produced by the capture of the fast neutrons on potassium. Adjusted to the year 1945, activities measured in the first samples taken at distances of 94, 818, 992, and 1,173 m from the hypocenter were 6.9+/-0.2, 0.32+/-0.01, 0.14+/-0.02, and 0.09+/-0.01 mBq/g K, respectively. All signals were significantly above detector background and show low uncertainties. Considering their uncertainties they agree with the calculated (39)Ar activation in the samples, based on the most recent dosimetry system DS02. It is concluded that this method can be used to investigate samples obtained from large distances in Hiroshima, where previous data on fast neutrons are characterized by considerable uncertainties. Additionally, the method can be used to reconstruct the fast neutron fluence in Nagasaki, where no experimental data exist.


Subject(s)
Argon/analysis , Fast Neutrons , Nuclear Warfare , Radiation Monitoring/methods , Radioisotopes/analysis , Risk Assessment/methods , Soil Pollutants, Radioactive/analysis , Japan , Radiation Dosage , Risk Factors
11.
Radiat Environ Biophys ; 44(2): 75-86, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16177928

ABSTRACT

The long-lived radioisotope (36)Cl (half-life: 301,000 years) was measured in granite samples exposed to A-bomb neutrons at distances from 94 to 1,591 m from the hypocenter in Hiroshima, by means of accelerator mass spectrometry (AMS). Measured (36)Cl/Cl ratios decrease from 1.6 x 10(-10) close to the hypocenter to about 1-2 x 10(-13), at a distance of 1,300 m from the hypocenter. At this distance and beyond the measured (36)Cl/Cl ratios do not change significantly and scatter around values of 1-2 x 10(-13). These findings suggest that the (36)Cl had been predominantly produced by thermalized neutrons from the A-bomb via neutron capture on stable (35)Cl, at distances from the hypocenter smaller than about 1,200 m. At larger distances, however, confounding processes induced by cosmic rays or neutrons from the decay of uranium and thorium become important. This hypothesis is theoretically and experimentally supported in a consecutive paper. The results are compared to calculations that are based on the most recent dosimetry system DS02. Close to the hypocenter, measured (36)Cl/Cl ratios are lower than those calculated, while they are significantly higher at large distances from the hypocenter. If the contribution of the cosmic rays and of the neutrons from the decay of uranium and thorium in the sample was subtracted, however, no significant deviation from the DS02 calculations was observed, at those distances. Thus, the Hiroshima neutron discrepancy reported in the literature for (36)Cl for samples from large distances from the hypocenter, i.e., higher measured (36)Cl/Cl ratios than predicted by the previous dosimetry system DS86, was not confirmed.


Subject(s)
Chlorine/adverse effects , Nuclear Warfare , Radioisotopes/adverse effects , Biophysical Phenomena , Biophysics , Chlorine/analysis , Humans , Japan , Mass Spectrometry , Neutrons , Radiation Dosage , Radioisotopes/analysis , Radiometry , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...