Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(32): 32759-32763, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31586314

ABSTRACT

The Water Framework Directive (WFD) currently supports chemical and ecological monitoring programmes in order to achieve the good water surface status. Although chemical and ecological assessments are necessary, they have some limitations. Chemical approaches focus on certain substances identified as priorities, but they do not take into account other potentially harmful substances and also ignore the hazards related to contaminant cocktails. On the other hand, while ecological approaches provide holistic information on the impairment of biological communities in ecosystems, they do not distinguish the role of contaminants in these alterations, and consequently do not allow the establishment of contaminant impact reduction plans. Consequently, ecotoxicologists suggest the use of effect-based tools such as biomarkers. Biomarkers highlight the effect of potentially harmful substances (or a cocktail), and their specificity towards the chemicals makes it possible to properly discriminate the role of toxicants within biological community impairments. Thus, the integration of such tools (besides existing chemical and ecological tools) in the WFD could considerably improve its biomonitoring strategy. The B n' B project (Biomarkers and Biodiversity) exposes key objectives that will allow to (i) establish an inventory of the biomarkers developed by French laboratories; (ii) determine their methodological advancement and limits and, on this basis, formulate recommendations for biomonitoring use and future research needs; (iii) discuss the biomarkers' ecological significance, specificity to contaminants and interpretation capacity; (iv) establish, in fine, a selection of valuable biomarkers to enter the WFD; and (iv) propose integrative tools to facilitate the decision-taking by stakeholders.


Subject(s)
Conservation of Water Resources/methods , Environmental Biomarkers , Environmental Monitoring , Biodiversity , Biomarkers , Conservation of Water Resources/legislation & jurisprudence , Ecology , Ecosystem , Hazardous Substances , Water , Water Pollutants, Chemical/analysis , Water Pollution , Water Resources/supply & distribution
3.
Mol Ecol ; 26(23): 6563-6577, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29087018

ABSTRACT

Genetic diversity is crucial for species' maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50-km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free-living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.


Subject(s)
Animal Distribution , Biodiversity , Genetic Variation , Genetics, Population , Invertebrates/classification , Animals , Aquatic Organisms/classification , Geography , Larva , Mediterranean Sea
4.
C R Biol ; 334(1): 13-23, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21262482

ABSTRACT

Echinocardium cordatum had long been considered as cosmopolitan, but molecular data revealed it is a complex of cryptic species, with two non-hybridizing species (B1 & B2) in the Mediterranean Sea living in syntopy with Echinocardium mediterraneum. Histological analyses of the gonads from a 17-month sampling period revealed a statistically significant time lag between the Maturity Indices of E. cordatum and E. mediterraneum. The main environmental stimulus may be different for the two nominal species, possibly seawater temperature for E. cordatum and chlorophyll a concentration for E. mediterraneum. Within the E. cordatum complex, spawning timing and synchrony are different according to major geographic areas (Atlantic/Pacific/Mediterranean) and/or the corresponding genetic subdivision [A/P/(B1 & B2)]. In contrast, the effects of temperature on the reproductive cycle seem rather to mirror the genetic lineages than environmental similarities of the different localities. Between the sister species (B1 & B2) no differences could be detected, maybe due to small sample sizes.


Subject(s)
Echinodermata/physiology , Reproduction/physiology , Algorithms , Animals , DNA/chemistry , DNA/genetics , Environment , Evolution, Molecular , Female , Gametogenesis , Gonads/growth & development , Gonads/physiology , Male , Mediterranean Sea , Polymorphism, Restriction Fragment Length , Seawater , Species Specificity , Temperature
5.
BMC Evol Biol ; 10: 276, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20836842

ABSTRACT

BACKGROUND: Despite the impressive growth of sequence databases, the limited availability of nuclear markers that are sufficiently polymorphic for population genetics and phylogeography and applicable across various phyla restricts many potential studies, particularly in non-model organisms. Numerous introns have invariant positions among kingdoms, providing a potential source for such markers. Unfortunately, most of the few known EPIC (Exon Primed Intron Crossing) loci are restricted to vertebrates or belong to multigenic families. RESULTS: In order to develop markers with broad applicability, we designed a bioinformatic approach aimed at avoiding multigenic families while identifying intron positions conserved across metazoan phyla. We developed a program facilitating the identification of EPIC loci which allowed slight variation in intron position. From the Homolens databases we selected 29 gene families which contained 52 promising introns for which we designed 93 primer pairs. PCR tests were performed on several ascidians, echinoderms, bivalves and cnidarians. On average, 24 different introns per genus were amplified in bilaterians. Remarkably, five of the introns successfully amplified in all of the metazoan genera tested (a dozen genera, including cnidarians). The influence of several factors on amplification success was investigated. Success rate was not related to the phylogenetic relatedness of a taxon to the groups that most influenced primer design, showing that these EPIC markers are extremely conserved in animals. CONCLUSIONS: Our new method now makes it possible to (i) rapidly isolate a set of EPIC markers for any phylum, even outside the animal kingdom, and thus, (ii) compare genetic diversity at potentially homologous polymorphic loci between divergent taxa.


Subject(s)
Computational Biology/methods , Genetic Markers/genetics , Animals , Introns/genetics , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic/genetics
6.
J Mol Evol ; 67(5): 539-50, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18949506

ABSTRACT

The divergent domain D8 of the large ribosomal RNA is very variable and extended in vertebrates compared to other eukaryotes. We provide data from 31 species of echinoderms and present the first comparative analysis of the D8 in nonvertebrate deuterostomes. In addition, we obtained 16S mitochondrial DNA sequences for the sea urchin taxa and analyzed single-strand conformation polymorphism (SSCP) of D8 in several populations within the species complex Echinocardium cordatum. A common secondary structure supported by compensatory substitutions and indels is inferred for echinoderms. Variation mostly arises at the tip of the longest stem (D8a), and the most variable taxa also display the longest and most stable D8. The most stable variants are the only ones displaying bulges in the terminal part of the stem, suggesting that selection, rather than maximizing stability of the D8 secondary structure, maintains it in a given range. Striking variation in D8 evolutionary rates was evidenced among sea urchins, by comparison with both 16S mitochondrial DNA and paleontological data. In Echinocardium cordatum and Strongylocentrotus pallidus and S. droebachiensis, belonging to very distant genera, the increase in D8 evolutionary rate is extreme. Their highly stable D8 secondary structures rule out the possibility of pseudogenes. These taxa are the only ones in which interspecific hybridization was reported. We discuss how evolutionary rates may be affected in nuclear relative to mitochondrial genes after hybridization, by selective or mutational processes such as gene silencing and concerted evolution.


Subject(s)
DNA, Ribosomal/genetics , Echinodermata/genetics , Evolution, Molecular , Hybridization, Genetic , Ribosome Subunits, Large/chemistry , Ribosome Subunits, Large/genetics , Animals , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Gene Silencing , Mutation , Polymorphism, Single-Stranded Conformational , Sea Urchins/genetics , Selection, Genetic
7.
J Invertebr Pathol ; 98(2): 136-47, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18191940

ABSTRACT

The microbial communities involved in the bald sea urchin disease of the echinoid Paracentrotus lividus are investigated using culture-independent techniques. Lesions of diseased specimens from two locations in France, La Ciotat (Mediterranean Sea) and Morgat (Atlantic Ocean), are examined by Scanning Electron Microscopy (SEM) and the diversity of their microbiota is analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rRNA gene clones libraries construction. Microscopic observations demonstrated that only the central area of the lesions is invaded by bacteria but not the peripheral zone and the surrounding healthy tissues. Molecular analysis identified at least 24 bacterial genomospecies in bald sea urchin lesions: 5 are Alphaproteobacteria, 10 are Gammaproteobacteria, 8 are CFB bacteria and 1 is a Fusobacteria. Out of them, 4 are observed in both locations while 10 occur only in the Atlantic Ocean and 10 only in the Mediterranean Sea. Gammaproteobacteria are the most represented in clones libraries from both locations, with respectively 65% and 43% of the total clones. CFB and Alphaproteobacteria accounted for the majority of the remaining clones and were detected by DGGE in virtually all samples from both stations. Our results demonstrate that bacterial communities observed on diseased individuals of the same echinoid species but originating from distinct locations are not similar and thus support the hypothesis that bacteria involved in the worldwide echinoid disease commonly called the bald sea urchin disease are opportunistic and not specific.


Subject(s)
Bacteria/classification , Bacterial Infections/pathology , Bacterial Infections/veterinary , Paracentrotus/microbiology , Animals , Atlantic Ocean , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/epidemiology , Cloning, Molecular , Electrophoresis, Polyacrylamide Gel , Mediterranean Sea , Microscopy, Electron, Scanning , Polymerase Chain Reaction , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...