Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 6045, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501323

ABSTRACT

Apex predators play an important role in the top-down regulation of ecological communities. Their hunting and feeding behaviors influence, respectively, prey demography and the availability of resources to other consumers. Among the most iconic-and enigmatic-terrestrial predators of the late Cenozoic are the Machairodontinae, a diverse group of big cats whose hypertrophied upper canines have earned them the moniker "sabertooths." Many aspects of these animals' paleobiology, especially their prey preferences and carcass consumption behavior, remain unsettled. While skeletal anatomy, dental morphology and wear, and isotopic profiles provide important insights, the most direct way to resolve these issues is through the fossil remains of sabertooth prey. Here, we report on a taphonomic analysis of an early Pleistocene faunal assemblage from Haile 21A (Florida, USA) that preserves feeding damage from the lion-sized sabertooth Xenosmilus hodsonae. Patterns of tooth-marking and bone damage indicate that Xenosmilus fully defleshed the carcasses of their prey and even engaged in some minor bone consumption. This has important implications for Pleistocene carnivoran guild dynamics, including the carcass foraging behavior of the first stone-tool-using hominins.


Subject(s)
Hominidae , Lions , Tooth , Animals , Bone and Bones , Fossils , Hominidae/physiology
2.
Proc Natl Acad Sci U S A ; 115(18): 4601-4606, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29610322

ABSTRACT

Humans are set apart from other organisms by the realization of their own mortality. Thus, determining the prehistoric emergence of this capacity is of significant interest to understanding the uniqueness of the human animal. Tracing that capacity chronologically is possible through archaeological investigations that focus on physical markers that reflect "mortality salience." Among these markers is the deliberate and culturally mediated disposal of corpses. Some Neandertal bone assemblages are among the earliest reasonable claims for the deliberate disposal of hominins, but even these are vigorously debated. More dramatic assertions center on the Middle Pleistocene sites of Sima de los Huesos (SH, Spain) and the Dinaledi Chamber (DC, South Africa), where the remains of multiple hominin individuals were found in deep caves, and under reported taphonomic circumstances that seem to discount the possibility that nonhominin actors and processes contributed to their formation. These claims, with significant implications for charting the evolution of the "human condition," deserve scrutiny. We test these assertions through machine-learning analyses of hominin skeletal part representation in the SH and DC assemblages. Our results indicate that nonanthropogenic agents and abiotic processes cannot yet be ruled out as significant contributors to the ultimate condition of both collections. This finding does not falsify hypotheses of deliberate disposal for the SH and DC corpses, but does indicate that the data also support partially or completely nonanthropogenic formational histories.


Subject(s)
Anthropology, Cultural/methods , Burial/history , Hominidae/psychology , Animals , Archaeology , Bone and Bones , Burial/ethics , Cadaver , Ceremonial Behavior , Fossils/history , History, Ancient , Humans , Machine Learning , Neanderthals , South Africa , Spain
3.
J Hum Evol ; 55(6): 1031-52, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18842286

ABSTRACT

The faunal assemblages excavated by Mary Leakey in Bed II of Olduvai Gorge, Tanzania, have, like the more well-known Bed I assemblages, traditionally been interpreted as the result of hominid butchering activities in the lake margin and riverine settings of the paleo-Olduvai Basin. A reexamination of all of Leakey's Bed I sites has shown that hominids played little or no role in the formation of all but one of those faunal assemblages, a finding that prompted the reanalysis of the Bed II sites presented here. We expand upon a previous taphonomic study that provided systematic data for HWK East Levels 1-2, MNK Main, and BK. In addition to these assemblages, we provide data on HWK East Levels 3-5, FC West, TK, and SHK. Our data contradict previous interpretations of MNK Main as a hominid accumulation but uphold the contention that BK represents a primarily hominid accumulation reflecting early access to carcasses. The small and poorly preserved assemblages from FC West and TK are difficult to link unambiguously to either hominids or carnivores. Site MNK Main and HWK East Levels 3-5 appear to be death arenas where carcasses accumulated via natural deaths and/or serial predation. Site SHK is severely biased by selective retention and therefore little can be said of its formational history. Nevertheless, no hominid modifications were documented in this assemblage. Comparisons with other Olduvai sites indicate a more conspicuous hyena taphonomic signal during Bed II times than Bed I times, which appears to mirror the changing configuration of the large carnivore guild. These findings also beg the question of what activities were being carried out by hominids with the stone tools discarded at these sites. Although it seems clear that hominids were utilizing stone tools to carry out subsistence activities unrelated to carcass butchery, more excavation and techniques such as phytolith analysis should be employed to explore alternative explanations.


Subject(s)
Bone and Bones , Feeding Behavior , Fossils , Hominidae/physiology , Tool Use Behavior , Animals , Tanzania
4.
J Hum Evol ; 47(5): 343-57, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15530352

ABSTRACT

Determining the extent to which hominid- and carnivore-derived components of fossil bone palimpsests formed independently of each other can provide valuable information to paleoanthropologists interested in reconstructing the foraging adaptations of hominids. Because stone tool cutmarks, hammerstone percussion marks, and carnivore tooth marks are usually only imparted on bone during nutrient extraction from a carcass, these bone surface modifications are particularly amenable to the types of analyses that might meet this goal. This study compares the percentage of limb bone specimens that preserve evidence of both hominid- and carnivore-imparted bone damage from actualistic control samples and several Plio-Pleistocene archaeofaunas, including new data from Swartkrans Member 3 (South Africa). We argue that this procedure, which elucidates the degree of hominid-carnivore independence in assemblage formation, will allow researchers to extract for focused analyses high integrity components (hominid and carnivore) from presumably low integrity sites. Comparisons suggest that the hominid- and carnivore-derived components from sites in Olduvai Gorge Bed II (Tanzania), the ST Site Complex at Peninj (Tanzania), and Swartkrans Member 3 formed largely independent of each other, while data from the FLK 22 Zinjanthropus (FLK Zinj) site (Olduvai Gorge Bed I) indicate significant interdependence in assemblage formation. This contrast suggests that some Early Stone Age assemblages (e.g., the Olduvai Gorge Bed II sites, the Peninj ST Site Complex, and Swartkrans Member 3) are probably more useful than others (e.g., FLK Zinj) for assessing the maximal carcass-acquiring abilities of early hominids; in such assemblages as those in the former set, sole hominid-contribution is more confidently discerned and isolated for analysis than in assemblages such as FLK Zinj.


Subject(s)
Archaeology , Carnivora/physiology , Fossils , Hominidae/physiology , Leg Bones , Animals , Behavior, Animal , Carnivora/anatomy & histology , Carnivora/growth & development , Hominidae/anatomy & histology , Hominidae/growth & development , Humans , South Africa , Tanzania
5.
J Hum Evol ; 46(5): 595-604, 2004 May.
Article in English | MEDLINE | ID: mdl-15120267

ABSTRACT

The ca. 1.0 myr old fauna from Swartkrans Member 3 (South Africa) preserves abundant indication of carnivore activity in the form of tooth marks (including pits) on many bone surfaces. This direct paleontological evidence is used to test a recent suggestion that leopards, regardless of prey body size, may have been almost solely responsible for the accumulation of the majority of bones in multiple deposits (including Swartkrans Member 3) from various Sterkfontein Valley cave sites. Our results falsify that hypothesis and corroborate an earlier hypothesis that, while the carcasses of smaller animals may have been deposited in Swartkrans by leopards, other kinds of carnivores (and hominids) were mostly responsible for the deposition of large animal remains. These results demonstrate the importance of choosing appropriate classes of actualistic data for constructing taphonomic inferences of assemblage formation. In addition, they stress that an all-encompassing model of assemblage formation for the hominid-bearing deposits of the Sterkfontein Valley is inadequate and that each must be evaluated individually using not just analogical reasoning but also incorporating empirical data generated in the preserved fossil samples.


Subject(s)
Carnivora , Fossils , Hominidae , Predatory Behavior , Animals , Anthropology, Physical , Bites and Stings , Body Constitution , Bone and Bones , Geological Phenomena , Geology , Humans , Movement , Reproducibility of Results , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...