Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Int J Cosmet Sci ; 46(1): 62-70, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37664975

ABSTRACT

OBJECTIVE: The human scalp is characterized by a moderately diverse microbial community, comprising prokaryotic (bacteria) and eukaryotic (fungi) members. Although the details are far from being fully understood, the human scalp microbiota is implicated in several scalp disorders, in particular dandruff formation. Hence, the protection of an intact and diverse scalp microbiota can be regarded as a quality criterion for hair and scalp care formulations. In this study, we investigated the influence of two commercially available, non-antimicrobial shampoo formulations on the structure of the scalp microbiota. METHODS: Scalp microbiota samples, obtained by swab sampling from two cohorts of probands (n = 25, each), were analysed before and after daily use of two different shampoo formulations for 2 weeks, respectively. A polyphasic approach was used, comprising quantitative cultivation of bacteria and fungi on selective media as well as sequencing of PCR-amplified 16S rRNA and 18S rRNA genes, respectively. RESULTS: All analyses revealed a microbiota composition typical for the human scalp. While in particular fungal germ numbers increased significantly during the treatments, overall bacterial and fungal community composition was not affected, based on alpha- and beta-diversity measures. However, we observed an increase in structural bacterial diversity with the age of the probands. CONCLUSIONS: Over an application period of 2 weeks, the investigated shampoo induced quantitative but no qualitative changes in the scalp microbial community structure of the investigated probands, suggesting no adverse but rather preserving or even stimulating effects of the underlying formulations on the scalp microbiota. Further investigation will have to clarify if this is also true for longer application periods and if the formulations might affect community functionality, for example microbial gene expression, rather than community composition.


OBJECTIF: Le cuir chevelu humain se caractérise par une communauté microbienne modérément diversifiée, comprenant des membres procaryotes (bactéries) et eucaryotes (champignons). Bien que l'on soit loin de comprendre totalement les détails, le microbiote du cuir chevelu humain est impliqué dans différents troubles du cuir chevelu, en particulier la formation de pellicules. La protection du microbiote du cuir chevelu intact et diversifié peut être considérée comme un critère de qualité pour les formulations de soins pour les cheveux et le cuir chevelu. Dans cette étude, nous avons examiné l'influence de deux formulations de shampooing non antimicrobien disponibles dans le commerce sur la structure du microbiote du cuir chevelu. MÉTHODES: Des échantillons de microbiote du cuir chevelu, obtenus par écouvillonnage dans deux cohortes de proposants (n = 25 dans chaque cohorte), ont été analysés respectivement avant et après l'utilisation quotidienne de deux formulations de shampooing pendant deux semaines. Une approche en plusieurs phases a été utilisée, dont une culture quantitative de bactéries et de champignons sur des milieux sélectifs et un séquençage respectivement des gènes de l'ARN ribosomique 16S et de l'ARN ribosomique 18S amplifiés par PCR. RÉSULTATS: Toutes les analyses ont révélé une composition du microbiote typique pour le cuir chevelu humain. Bien que le nombre de germes fongiques en particulier ait augmenté significativement pendant les traitements, la composition globale des communautés bactériennes et fongiques n'a pas été affectée, d'après les mesures de diversité alpha et bêta. Cependant, nous avons observé une augmentation de la diversité bactérienne structurelle avec l'âge des proposants. CONCLUSIONS: Sur une période d'utilisation de deux semaines, le shampooing étudié a induit des modifications quantitatives, mais pas qualitatives, de la structure des communautés microbiennes du cuir chevelu des proposants étudiés, ce qui suggère qu'il n'y a pas d'effets indésirables, mais qu'il y a des effets de préservation, voire de stimulation, des formulations sous-jacentes sur le microbiote du cuir chevelu. Des recherches supplémentaires devront clarifier si cela s'avère également pour des périodes d'utilisation plus longues et si les formulations peuvent affecter la fonctionnalité des communautés, par exemple, l'expression des gènes microbiens, plutôt que la composition des communautés.


Subject(s)
Dandruff , Microbiota , Humans , Scalp/microbiology , RNA, Ribosomal, 16S/genetics , Dandruff/microbiology , Hair , Bacteria
2.
Eur J Neurol ; 30(11): 3581-3594, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36593694

ABSTRACT

BACKGROUND AND PURPOSE: The role of the gut microbiome in the pathogenesis of Parkinson disease (PD) is under intense investigation, and the results presented are still very heterogeneous. These discrepancies arise not only from the highly heterogeneous pathology of PD, but also from widely varying methodologies at all stages of the workflow, from sampling to final statistical analysis. The aim of the present work is to harmonize the workflow across studies to reduce the methodological heterogeneity and to perform a pooled analysis to account for other sources of heterogeneity. METHODS: We performed a systematic review to identify studies comparing the gut microbiota of PD patients to healthy controls. A workflow was designed to harmonize processing across all studies from bioinformatics processing to final statistical analysis using a Bayesian random-effects meta-analysis based on individual patient-level data. RESULTS: The results show that harmonizing workflows minimizes differences between statistical methods and reveals only a small set of taxa being associated with the pathogenesis of PD. Increased shares of the genera Akkermansia and Bifidobacterium and decreased shares of the genera Roseburia and Faecalibacterium were most characteristic for PD-associated microbiota. CONCLUSIONS: Our study summarizes evidence that reduced levels of butyrate-producing taxa in combination with possible degradation of the mucus layer by Akkermansia may promote intestinal inflammation and reduced permeability of the gut mucosal layer. This may allow potentially pathogenic metabolites to transit and enter the enteric nervous system.

3.
Access Microbiol ; 4(5): acmi000345, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36003361

ABSTRACT

In Parkinson's disease (PD), α-synuclein is a key protein in the process of neurodegeneration. Besides motor symptoms, most PD patients additionally suffer from gastrointestinal tract (GIT) dysfunctions, even several years before the onset of motor disabilities. Studies have reported a dysbiosis of gut bacteria in PD patients compared to healthy controls and have suggested that the enteric nervous system (ENS) can be involved in the development of the disease. As α-synuclein was found to be secreted by neurons of the ENS, we used RNA-based stable isotope probing (RNA-SIP) to identify gut bacteria that might be able to assimilate this protein. The gut contents of 24 mice were pooled and incubated with isotopically labelled (13C) and unlabelled (12C) α-synuclein. After incubation for 0, 4 and 24 h, RNA was extracted from the incubations and separated by density gradient centrifugation. However, RNA quantification of density-resolved fractions revealed no incorporation of the 13C isotope into the extracted RNA, suggesting that α-synuclein was not assimilated by the murine gut bacteria. Potential reasons and consequences for follow-up-studies are discussed.

4.
Arch Microbiol ; 204(7): 363, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35661258

ABSTRACT

Kitchen sponges are particularly well known to harbor a high number and diversity of bacteria, including pathogens. Viruses, archaea, and eukaryotes in kitchen sponges, however, have not been examined in detail so far. To increase knowledge on the non-bacterial kitchen sponge microbiota and its potential hygienic relevance, we investigated five used kitchen sponges by means of metagenomic shot-gun sequencing. Viral particles were sought to be enriched by a filter step during DNA extraction from the sponges. Data analysis revealed that ~ 2% of the sequences could be assigned to non-bacterial taxa. Each sponge harbored different virus (phage) species, while the present archaea were predominantly affiliated with halophilic taxa. Among the eukaryotic taxa, besides harmless algae, or amoebas, mainly DNA from food-left-overs was found. The presented work offers new insights into the complex microbiota of used kitchen sponges and contributes to a better understanding of their hygienic relevance.


Subject(s)
Microbiota , Porifera , Animals , Archaea/genetics , Bacteria/genetics , Metagenome , Metagenomics , Microbiota/genetics , Phylogeny , Porifera/genetics
5.
J Transl Med ; 20(1): 111, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35255932

ABSTRACT

The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Probiotics , Dysbiosis/therapy , Gastrointestinal Tract , Humans , Prebiotics , Probiotics/therapeutic use
6.
J Microbiol Methods ; 194: 106432, 2022 03.
Article in English | MEDLINE | ID: mdl-35134450

ABSTRACT

Cesium trifluoroacetate (CsTFA) is a gradient medium for isopycnic centrifugation in RNA-based Stable Isotope Probing (RNA-SIP), an important means to link the structure and function of microbial communities. We report a protocol to easily synthesize CsTFA from cesium carbonate (Cs2CO3) and trifluoroacetic acid (TFA) and show that self-synthesized CsTFA performs similarly to commercial CsTFA in the separation of isotopically labelled and unlabelled bacterial RNA.


Subject(s)
Isotopes , RNA, Bacterial , Carbon Isotopes/chemistry , Centrifugation, Density Gradient/methods , Centrifugation, Isopycnic/methods , Isotope Labeling/methods , RNA, Bacterial/genetics , Trifluoroacetic Acid
7.
Front Cell Infect Microbiol ; 11: 745653, 2021.
Article in English | MEDLINE | ID: mdl-34869057

ABSTRACT

Slit lamps are routinely used to examine large numbers of patients every day due to high throughput. Previous, cultivation-based results suggested slit lamps to be contaminated with bacteria, mostly coagulase-negative staphylococci, followed by micrococci, bacilli, but also Staphylococcus aureus. Our study aimed at obtaining a much more comprehensive, cultivation-independent view of the slit lamp bacteriota and its hygienic relevance, as regularly touched surfaces usually represent fomites, particularly if used by different persons. We performed extensive 16S rRNA gene sequencing to analyse the bacteriota, of 46 slit lamps from two tertiary care centers at two sampling sites, respectively. 82 samples yielded enough sequences for downstream analyses and revealed contamination with bacteria of mostly human skin, mucosa and probably eye origin, predominantly cutibacteria, staphylococci and corynebacteria. The taxonomic assignment of 3369 ASVs (amplicon sequence variants) revealed 19 bacterial phyla and 468 genera across all samples. As antibiotic resistances are of major concern, we screened all samples for methicillin-resistant Staphylococcus aureus (MRSA) using qPCR, however, no signals above the detection limit were detected. Our study provides first comprehensive insight into the slit lamp microbiota. It underlines that slit lamps carry a highly diverse, skin-like bacterial microbiota and that thorough cleaning and disinfection after use is highly recommendable to prevent eye and skin infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , RNA, Ribosomal, 16S/genetics , Slit Lamp , Staphylococcus aureus/genetics
8.
NPJ Parkinsons Dis ; 7(1): 101, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795317

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disease, and is so far not considered curable. PD patients suffer from several motor and non-motor symptoms, including gastrointestinal dysfunctions and alterations of the enteric nervous system. Constipation and additional intestinal affections can precede the classical motor symptoms by several years. Recently, we reported effects of PD and related medications on the faecal bacterial community of 34 German PD patients and 25 age-matched controls. Here, we used the same collective and analysed the V6 and V7 hypervariable region of PCR-amplified, eukaryotic 18S rRNA genes using an Illumina MiSeq platform. In all, 53% (18) of the PD samples and 72% (18) of the control samples yielded sufficient amplicons for downstream community analyses. The PD samples showed a significantly lower alpha and a different beta eukaryotic diversity than the controls. Most strikingly, we observed a significantly higher relative abundance of sequence affiliated with the Geotrichum genus in the PD samples (39.7%), when compared to the control samples (0.05%). In addition, we observed lower relative abundances of sequences affiliated with Aspergillus/Penicillium, Charophyta/Linum, unidentified Opisthokonta and three genera of minor abundant zooflagellates in the PD samples. Our data add knowledge to the small body of data about the eukaryotic microbiota of PD patients and suggest a potential association of certain gut eukaryotes and PD.

9.
Pharmaceutics ; 13(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34683942

ABSTRACT

Improving medical implants with functional polymer coatings is an effective way to further improve the level of medical care. Antibacterial and biofilm-preventing properties are particularly desirable in the area of wound healing, since there is a generally high risk of infection, often with a chronic course in the case of biofilm formation. To prevent this we here report a polymeric design of polymer-bound N-acetyl-glucosamine-oligoethylene glycol residues that mimic a cationic, antibacterial, and biocompatible chitosan surface. The combination of easy to use, crosslinkable, thin, potentially 3D-printable polymethacrylate layering with antibacterial and biocompatible functional components will be particularly advantageous in the medical field to support a wide range of implants as well as wound dressings. Different polymers containing a N-acetylglucosamine-methacryloyl residue with oligoethylene glycol linkers and a methacryloyl benzophenone crosslinker were synthesized by free radical polymerization. The functional monomers and corresponding polymers were characterized by 1H, 13C NMR, and infrared (IR) spectroscopy. The polymers showed no cytotoxic or antiadhesive effects on fibroblasts as demonstrated by extract and direct contact cell culture methods. Biofilm formation was reduced by up to 70% and antibacterial growth by 1.2 log, particularly for the 5% GlcNAc-4EG polymer, as observed for Escherichia coli and Staphylococcus aureus as clinically relevant Gram-negative and Gram-positive model pathogens.

10.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34445321

ABSTRACT

Listeria monocytogenes is an important food-borne pathogen and a serious concern to food industries. Bacteriocins are antimicrobial peptides produced naturally by a wide range of bacteria mostly belonging to the group of lactic acid bacteria (LAB), which also comprises many strains used as starter cultures or probiotic supplements. Consequently, multifunctional strains that produce bacteriocins are an attractive approach to combine a green-label approach for food preservation with an important probiotic trait. Here, a collection of bacterial isolates from raw cow's milk was typed by 16S rRNA gene sequencing and MALDI-Biotyping and supernatants were screened for the production of antimicrobial compounds. Screening was performed with live Listeria monocytogenes biosensors using a growth-dependent assay and pHluorin, a pH-dependent protein reporting membrane damage. Purification by cation exchange chromatography and further investigation of the active compounds in supernatants of two isolates belonging to the species Pediococcus acidilactici and Lactococcus garvieae suggest that their antimicrobial activity is related to heat-stable proteins/peptides that presumably belong to the class IIa bacteriocins. In conclusion, we present a pipeline of methods for high-throughput screening of strain libraries for potential starter cultures and probiotics producing antimicrobial compounds and their identification and analysis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriocins/pharmacology , Drug Discovery/methods , Listeria monocytogenes/drug effects , Probiotics , Animals , Anti-Bacterial Agents/biosynthesis , Bacteriocins/biosynthesis , Lactococcus/isolation & purification , Lactococcus/metabolism , Microbiota , Milk/microbiology , Pediococcus acidilactici/isolation & purification , Pediococcus acidilactici/metabolism
11.
Microorganisms ; 9(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34442670

ABSTRACT

Microbially contaminated washing machines and mild laundering conditions facilitate the survival and growth of microorganisms on laundry, promoting undesired side effects such as malodor formation. Clearly, a deeper understanding of the functionality and hygienic relevance of the laundry microbiota necessitates the analysis of the microbial gene expression on textiles after washing, which-to the best of our knowledge-has not been performed before. In this pilot case study, we used single-end RNA sequencing to generate de novo transcriptomes of the bacterial communities remaining on polyester and cotton fabrics washed in a domestic washing machine in mild conditions and subsequently incubated under moist conditions for 72 h. Two common de novo transcriptome assemblers were used. The final assemblies included 22,321 Trinity isoforms and 12,600 Spades isoforms. A large part of these isoforms could be assigned to the SwissProt database, and was further categorized into "molecular function", "biological process" and "cellular component" using Gene Ontology (GO) terms. In addition, differential gene expression was used to show the difference in the pairwise comparison of the two tissue types. When comparing the assemblies generated with the two assemblers, the annotation results were relatively similar. However, there were clear differences between the de novo assemblies regarding differential gene expression.

12.
Microorganisms ; 9(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922491

ABSTRACT

Detergent drawer and door seal represent important sites for microbial life in domestic washing machines. Interestingly, quantitative data on the microbial contamination of these sites is scarce. Here, 10 domestic washing machines were swab-sampled for subsequent bacterial cultivation at four different sampling sites: detergent drawer and detergent drawer chamber, as well as the top and bottom part of the rubber door seal. The average bacterial load over all washing machines and sites was 2.1 ± 1.0 × 104 CFU cm-2 (average number of colony forming units ± standard error of the mean (SEM)). The top part of the door seal showed the lowest contamination (11.1 ± 9.2 × 101 CFU cm-2), probably due to less humidity. Out of 212 isolates, 178 (84%) were identified on the genus level, and 118 (56%) on the species level using matrix-assisted laser desorption/ionization (MALDI) Biotyping, resulting in 29 genera and 40 identified species across all machines. The predominant bacterial genera were Staphylococcus and Micrococcus, which were found at all sites. 22 out of 40 species were classified as opportunistic pathogens, emphasizing the need for regular cleaning of the investigated sites.

13.
Microorganisms ; 8(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423128

ABSTRACT

Kitchen sponges massively absorb and spread microorganisms, leading to contamination of kitchen appliances, surfaces, and food. Microwaving as an effective and widespread technique can rapidly reduce the microbial load of kitchen sponges. However, long-term effects of such treatments are largely unknown. Notably, it has been speculated that regularly applied domestic cleaning and disinfection may select for microbial communities with a higher pathogenic potential and/or malodorous properties. In this study, we distributed newly purchased polyurethane kitchen sponges to 20 participants, with the instruction to use them under normal household conditions for four weeks. Ten of the participants sanitized their sponges regularly by a standardized microwaving protocol, while the remaining ten sponges remained untreated. Metagenomic sequence data evaluation indicated that, in addition to bacteria, viruses, eukaryotes, and archaea were also part of the kitchen sponge microbiome. Comparisons of sanitized and untreated kitchen sponges indicated a trend towards a reduced structural microbial diversity while functional diversity increased. Microwave sanitization appeared to alter composition and metabolic properties of the microbial communities. Follow-up studies will have to show whether these changes are more positive or negative in terms of domestic hygiene, human health, and well-being.

14.
J Clin Med ; 9(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455878

ABSTRACT

Microscopes are used in virtually every biological and medical laboratory. Previous cultivation-based studies have suggested that direct contact with microscope eyepieces increases the risk of eye infections. To obtain a deeper insight into the microbiota on oculars, we analysed 10 recently used university microscopes. Their left oculars were used for a cultivation-based approach, while the right oculars served for massive gene sequencing. After cleaning with isopropyl alcohol, the oculars were re-sampled and analysed again. All oculars were found to be contaminated with bacteria, with a maximum load of 1.7 × 103 CFU cm-2. MALDI Biotyping revealed mainly Cutibacterium (68%), Staphylococcus (14%) and Brevibacterium (10%), with the most abundant species being Cutibacterium acnes (13%) and Staphylococcus capitis (6%). Cleaning reduced the microbial load by up to 2 log scales. Within 10 uncleaned and 5 cleaned samples, 1480 ASVs were assigned to 10 phyla and 262 genera. The dominant genera before cleaning were Cutibacterium (78%), Paracoccus (13%), Pseudomonas (2%) and Acinetobacter (1%). The bacteriota composition on the cleaned oculars was similar; however, it probably largely represented dead bacteria. In summary, used oculars were significantly contaminated with skin and environmental bacteria, including potential pathogens. Regular cleaning is highly recommended to prevent eye and skin infections.

15.
Sci Rep ; 10(1): 5577, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221361

ABSTRACT

Regularly touched surfaces are usually contaminated with microorganisms and might be considered as fomites. The same applies for spectacles, but only little is known about their microbial colonization. Previous cultivation-based analyses from our group revealed a bacterial load strongly dominated by staphylococci. To better account for aerotolerant anaerobes, slow growing and yet-uncultivated bacteria, we performed an optimized 16S rRNA gene sequencing approach targeting the V1-V3 region. 30 spectacles were swab-sampled at three sites, each (nosepads, glasses and earclips). We detected 5232 OTUs affiliated with 19 bacterial phyla and 665 genera. Actinobacteria (64%), Proteobacteria (22%), Firmicutes (7%) and Bacteroidetes (5%) were relatively most abundant. At genus level, 13 genera accounted for 84% of the total sequences of all spectacles, having a prevalence of more than 1% relative abundance. Propionibacterium (57%), Corynebacterium (5%), Staphylococcus (4%), Pseudomonas, Sphingomonas and Lawsonella (3%, each) were the dominant genera. Interestingly, bacterial diversity on the glasses was significantly higher compared to nosepads and earclips. Our study represents the first cultivation-independent study of the bacteriota of worn spectacles. Dominated by bacteria of mostly human skin and epithelia origin and clearly including potential pathogens, spectacles may play a role as fomites, especially in clinical environments.


Subject(s)
Bacteria/genetics , Adult , Biodiversity , Eyeglasses/microbiology , Female , Fomites/microbiology , Humans , Male , RNA, Ribosomal, 16S/genetics , Skin/microbiology , Young Adult
16.
Can J Microbiol ; 66(8): 491-494, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32134703

ABSTRACT

RNA-based stable isotope probing (RNA-SIP) is used in molecular microbial ecology to link the identity of microorganisms in a complex community with the assimilation of a distinct substrate. The technique is highly dependent on a reliable separation of isotopic-labeled RNA from unlabeled RNA by isopycnic density gradient ultracentrifugation. Here we show that 13C-labeled and unlabeled Escherichia coli RNA can be sufficiently separated by isopycnic ultracentrifugation even in the absence of formamide. However, a slightly lower starting density is needed to obtain a distribution pattern similar to that obtained when formamide was used. Hence, the commonly used addition of formamide to the centrifugation solution might not be needed to separate 13C-labeled RNA from unlabeled RNA, but this must be verified for more complex environmental mixtures of RNA. Clearly, an omission of formamide would increase the safety of RNA-SIP analyses.


Subject(s)
Escherichia coli/genetics , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , Carbon Isotopes/chemistry , Centrifugation, Density Gradient/methods , Escherichia coli/chemistry , Formamides/chemistry , Isotope Labeling/methods , RNA, Bacterial/chemistry , Ultracentrifugation/methods
17.
Environ Microbiol ; 22(1): 212-228, 2020 01.
Article in English | MEDLINE | ID: mdl-31657089

ABSTRACT

Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01-0.84 µM) indicated the hypolimnion as the major place of nitrification with 15 N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%-21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Lakes/microbiology , Nitrification , Ammonium Compounds/metabolism , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/metabolism , Ecosystem , Oxidation-Reduction , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
18.
NPJ Parkinsons Dis ; 5: 28, 2019.
Article in English | MEDLINE | ID: mdl-31815177

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. PD patients suffer from gastrointestinal dysfunctions and alterations of the autonomous nervous system, especially its part in the gut wall, i.e., the enteric nervous system (ENS). Such alterations and functional gastrointestinal deficits often occur years before the classical clinical symptoms of PD appear. Until now, only little is known about PD-associated changes in gut microbiota composition and their potential implication in PD development. In order to increase knowledge in this field, fecal samples of 34 PD patients and 25 healthy, age-matched control persons were investigated. Here, the V4 and V5 hypervariable region of bacterial 16S rRNA genes was PCR-amplified and sequenced using an Ion Torrent PGM platform. Within the PD group, we observed a relative decrease in bacterial taxa which are linked to health-promoting, anti-inflammatory, neuroprotective or other beneficial effects on the epithelial barrier, such as Faecalibacterium and Fusicatenibacter. Both taxa were lowered in PD patients with elevated levels of the fecal inflammation marker calprotectin. In addition, we observed an increase in shares of the Clostridiales family XI and their affiliated members in these samples. Finally, we found that the relative abundances of the bacterial genera Peptoniphilus, Finegoldia, Faecalibacterium Fusicatenibacter, Anaerococcus, Bifidobacterium, Enterococcus, and Ruminococcus were significantly influenced by medication with L-dopa and entacapone, respectively. Our data confirm previously reported effects of COMT inhibitors on the fecal microbiota of PD patients and suggest a possible effect of L-dopa medication on the relative abundance of several bacterial genera.

19.
PLoS One ; 14(12): e0226835, 2019.
Article in English | MEDLINE | ID: mdl-31887116

ABSTRACT

Accumulating evidence indicates that there is an interaction between the gut microbiota and endometriotic lesions. The new formation of these lesions is associated with stem cell recruitment, angiogenesis and inflammation, which may affect the composition of the gut microbiota. To test this hypothesis, we herein induced endometriotic lesions by transplantation of uterine tissue fragments from green fluorescent protein (GFP)+ donor mice into the peritoneal cavity of GFP- C57BL/6 wild-type mice. Sham-transplanted animals served as controls. Fecal pellets of the animals were collected 3 days before as well as 7 and 21 days after the induction of endometriosis to analyze the composition of the gut microbiota by means of 16S ribosomal RNA gene sequencing. The transplantation of uterine tissue fragments resulted in the establishment of endometriotic lesions in all analyzed mice. These lesions exhibited a typical histomorphology with endometrial glands surrounded by a vascularized stroma. Due to their bright GFP signal, they could be easily differentiated from the surrounding GFP- host tissue. Bacterial 16S rRNA genes were successfully PCR-amplified from the DNA extracts of all obtained mice fecal samples. However, no significant effect of endometriosis induction on the composition of the bacterial microbiota was detected with our experimental setup. Our findings allow careful speculation that endometriosis in mice does not induce pronounced dysbiosis during the acute phase of lesion formation.


Subject(s)
Endometriosis/microbiology , Feces/microbiology , Animals , Disease Models, Animal , Dysbiosis , Endometriosis/pathology , Female , Gastrointestinal Microbiome/genetics , Green Fluorescent Proteins , Mice , Microbiota , RNA, Ribosomal, 16S/genetics
20.
Microorganisms ; 8(1)2019 Dec 22.
Article in English | MEDLINE | ID: mdl-31877898

ABSTRACT

Modern, mainly sustainability-driven trends, such as low-temperature washing or bleach-free liquid detergents, facilitate microbial survival of the laundry processes. Favourable growth conditions like humidity, warmth and sufficient nutrients also contribute to microbial colonization of washing machines. Such colonization might lead to negatively perceived staining, corrosion of washing machine parts and surfaces, as well as machine and laundry malodour. In this study, we characterized the bacterial community of 13 domestic washing machines at four different sampling sites (detergent drawer, door seal, sump and fibres collected from the washing solution) using 16S rRNA gene pyrosequencing and statistically analysed associations with environmental and user-dependent factors. Across 50 investigated samples, the bacterial community turned out to be significantly site-dependent with the highest alpha diversity found inside the detergent drawer, followed by sump, textile fibres isolated from the washing solution, and door seal. Surprisingly, out of all other investigated factors only the monthly number of wash cycles at temperatures ≥ 60 °C showed a significant influence on the community structure. A higher number of hot wash cycles per month increased microbial diversity, especially inside the detergent drawer. Potential reasons and the hygienic relevance of this finding need to be assessed in future studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...