Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Article in English | MEDLINE | ID: mdl-38712683

ABSTRACT

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Subject(s)
Plant Leaves , Carbon Cycle , Carbon/metabolism
2.
Appl Plant Sci ; 5(8)2017 Aug.
Article in English | MEDLINE | ID: mdl-28924511

ABSTRACT

PREMISE OF THE STUDY: Arbuscular mycorrhizal fungi (AMF) are globally important root symbioses that enhance plant growth and nutrition and influence ecosystem structure and function. To better characterize levels of AMF diversity relevant to ecosystem function, deeper sequencing depth in environmental samples is needed. In this study, Illumina barcoded primers and a bioinformatics pipeline were developed and applied to study AMF diversity and community structure in environmental samples. METHODS: Libraries of small subunit ribosomal RNA fragment amplicons were amplified from environmental DNA using a single-step PCR reaction with barcoded NS31/AML2 primers. Amplicons were sequenced on an Illumina MiSeq sequencer using version 2, 2 × 250-bp paired-end chemistry, and analyzed using QIIME and RDP Classifier. RESULTS: Sequencing captured 196 to 6416 operational taxonomic units (OTUs; depending on clustering parameters) representing nine AMF genera. Regardless of clustering parameters, ∼20 OTUs dominated AMF communities (78-87% reads) with the remaining reads distributed among other OTUs. Analyses also showed significant biogeographic differences in AMF communities and that community composition could be linked to specific edaphic factors. DISCUSSION: Barcoded NS31/AML2 primers and Illumina MiSeq sequencing provide a powerful approach to address AMF diversity and variations in fungal assemblages across host plants, ecosystems, and responses to environmental drivers including global change.

3.
Ann Bot ; 111(3): 409-18, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23275632

ABSTRACT

BACKGROUND AND AIMS: Mycorrhizal specialization has been shown to limit recruitment capacity in orchids, but an increasing number of orchids are being documented as invasive or weed-like. The reasons for this proliferation were examined by investigating mycorrhizal fungi and edaphic correlates of Microtis media, an Australian terrestrial orchid that is an aggressive ecosystem and horticultural weed. METHODS: Molecular identification of fungi cultivated from M. media pelotons, symbiotic in vitro M. media seed germination assays, ex situ fungal baiting of M. media and co-occurring orchid taxa (Caladenia arenicola, Pterostylis sanguinea and Diuris magnifica) and soil physical and chemical analyses were undertaken. KEY RESULTS: It was found that: (1) M. media associates with a broad taxonomic spectrum of mycobionts including Piriformospora indica, Sebacina vermifera, Tulasnella calospora and Ceratobasidium sp.; (2) germination efficacy of mycorrhizal isolates was greater for fungi isolated from plants in disturbed than in natural habitats; (3) a higher percentage of M. media seeds germinate than D. magnifica, P. sanguinea or C. arenicola seeds when incubated with soil from M. media roots; and (4) M. media-mycorrhizal fungal associations show an unusual breadth of habitat tolerance, especially for soil phosphorus (P) fertility. CONCLUSIONS: The findings in M. media support the idea that invasive terrestrial orchids may associate with a diversity of fungi that are widespread and common, enhance seed germination in the host plant but not co-occurring orchid species and tolerate a range of habitats. These traits may provide the weedy orchid with a competitive advantage over co-occurring orchid species. If so, invasive orchids are likely to become more broadly distributed and increasingly colonize novel habitats.


Subject(s)
Ecosystem , Mycorrhizae/growth & development , Orchidaceae/microbiology , Soil Microbiology , Adaptation, Physiological , Australia , Basidiomycota/classification , Basidiomycota/growth & development , Genetic Variation , Germination , Introduced Species , Mycorrhizae/classification , Orchidaceae/growth & development , Phosphorus/chemistry , Phylogeny , Plant Roots/growth & development , Plant Roots/microbiology , Seeds/growth & development , Soil/chemistry , Symbiosis
4.
Ecology ; 90(3): 649-62, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19341136

ABSTRACT

California coast live oak (Quercus agrifolia) forms tripartite symbiotic associations with arbuscular (AMF) and ectomycorrhizal (EMF) fungi. We selected oak individuals differing in topographic position and depth to groundwater (mesic valley vs. xeric hill sites) to investigate changes of tree mycorrhizal status in response to interannual rainfall variability. EMF root colonization, as well as hyphal abundance and viability in upper rhizosphere soil (0-30 cm), were negatively affected by severe multi-year drought, although not to the same extent in each topographic location. Oak trees growing in hill sites showed EMF colonization levels <1% in upper roots during drought. By contrast, oaks in valley sites maintained much higher EMF colonization (>19%) in upper roots during drought. EMF root colonization increased sharply at both topographic positions during the ensuing wet year (78% in valley, 49% in hill), which indicates that the mycorrhizal status of roots in upper rhizosphere soil is highly responsive to interannual rainfall variability. Across sites and years, percentage EMF colonization and soil hyphal density and viability were strongly positively correlated with soil moisture potential, but percentage AMF root colonization was not. Interestingly, changes in percentage EMF root colonization and density of viable hyphae between a wet and a dry year were proportionally much greater in xeric hill sites than in mesic valley sites. The mycorrhizal status of oak trees was particularly responsive to changes in soil moisture at the hill sites, where roots in upper rhizosphere soil shifted from almost exclusively AMF during severe drought to predominantly EMF during the ensuing wet year. By contrast, the mycorrhizal status of oaks in the valley sites was less strongly coupled to current meteorological conditions, as roots in upper soil layers remained predominantly EMF during both a dry and a wet year. Canopy shading and hydraulic lift by oaks in valley sites likely contributed to maintain the integrity and viability of EMF roots and extraradical hyphae in upper rhizosphere soil during extended drought. Our results suggest that oak woodlands in water-limited ecosystems may become increasingly reliant on the AMF symbiosis under future climate change scenarios for the U.S. southwest and other world regions.


Subject(s)
Fungi/metabolism , Mycorrhizae/growth & development , Quercus/microbiology , Rain , Water/metabolism , Droughts , Fungi/growth & development , Fungi/physiology , Population Density , Population Dynamics , Seasons , Soil/analysis , Symbiosis
5.
Plant Signal Behav ; 3(1): 68-71, 2008 Jan.
Article in English | MEDLINE | ID: mdl-19704776

ABSTRACT

Apart from improving plant and soil water status during drought, it has been suggested that hydraulic lift (HL) could enhance plant nutrient capture through the flow of mineral nutrients directly from the soil to plant roots, or by maintaining the functioning of mycorrhizal fungi. We evaluated the extent to which the diel cycle of water availability created by HL covaries with the efflux of HL water from the tips of extramatrical (external) mycorrhizal hyphae, and the possible effects on biogeochemical processes. Phenotypic mycorrhizal fungal variables, such as total and live hyphal lengths, were positively correlated with HL efflux from hyphae, soil water potential (dawn), and plant response variables (foliar (15)N). The efflux of HL water from hyphae was also correlated with bacterial abundance and soil enzyme activity (P), and the moistening of soil organic matter. Such findings indicate that the efflux of HL water from the external mycorrhizal mycelia may be a complementary explanation for plant nutrient acquisition and survival during drought.

6.
Mycorrhiza ; 17(5): 439-447, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17333298

ABSTRACT

Little is known about water transfer via mycorrhizal hyphae to plants, despite its potential importance in seedling establishment and plant community development, especially in arid environments. Therefore, this process was investigated in the study reported in this paper in laboratory-based tripartite mesocosms containing the shrub Arctostaphylos viscida (manzanita) and young seedlings of sugar pine (Pinus lambertiana) and Douglas-fir (Pseudotsuga menziesii). The objectives were to determine whether water could be transported through mycorrhizal symbionts shared by establishing conifers and A. viscida and to compare the results obtained using two tracers: the stable isotope deuterium and the dye lucifer yellow carbohydrazide. Water containing the tracers was added to the central compartment containing single manzanita shrubs. The fungal hyphae were then collected as well as plant roots from coniferous seedlings in the other two compartments to determine whether water was transferred via fungal hyphae. In addition, the length of the hyphae and degree of mycorrhizal colonisation were determined. Internal transcribed spacer-restriction fragment length polymorphism (ITS-RFLP) analysis was used to identify the fungal species involved in dye (water) transfer. Results of the stable isotope analysis showed that water is transferred via mycorrhizal hyphae, but isotopically labelled water was only detected in Douglas-fir roots, not in sugar pine roots. In contrast, the fluorescent dye was transported via mycorrhizal hyphae to both Douglas-fir and sugar pine seedlings. Only 1 of 15 fungal morphotypes (identified as Atheliaceae) growing in the mesocosms transferred the dye. Differences were detected in the water transfer patterns indicated by the deuterium and fluorescent dye tracers, suggesting that the two labels are transported by different mechanisms in the same hyphae and/or that different fungal taxa transfer them via different routes to host plants. We conclude that both tracers can provide information on resource transfer between fungi and plants, but we cannot be sure that the dye transfer data provide accurate indications of water transfer rates and patterns. The isotopic tracer provides more direct indications of water movement and is therefore more suitable than the dye for studying water relations of plants and their associated mycorrhizal fungi.


Subject(s)
Fungi/metabolism , Hyphae/metabolism , Mycorrhizae , Seedlings/metabolism , Tracheophyta/metabolism , Water/metabolism , Arctostaphylos/metabolism , Arctostaphylos/microbiology , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Deuterium/metabolism , Fungi/genetics , Fungi/isolation & purification , Isoquinolines/metabolism , Molecular Sequence Data , Pinus/metabolism , Pinus/microbiology , Polymorphism, Restriction Fragment Length , Pseudotsuga/metabolism , Pseudotsuga/microbiology , Seedlings/microbiology , Staining and Labeling , Tracheophyta/microbiology
7.
J Exp Bot ; 58(6): 1473-83, 2007.
Article in English | MEDLINE | ID: mdl-17350936

ABSTRACT

Plant roots may be linked by shared or common mycorrhizal networks (CMNs) that constitute pathways for the transfer of resources among plants. The potential for water transfer by such networks was examined by manipulating CMNs independently of plant roots in order to isolate the role(s) of ectomycorrhizal (EM) and arbuscular mycorrhizal fungal (AMF) networks in the plant water balance during drought (soil water potential -5.9 MPa). Fluorescent tracer dyes and deuterium-enriched water were used to follow the pathways of water transfer from coastal live oak seedlings (Quercus agrifolia Nee; colonized by EM and AMF) conducting hydraulic lift (HL) into the roots of water-stressed seedlings connected only by EM (Q. agrifolia) or AMF networks (Q. agrifolia, Eriogonum fasciculatum Benth., Salvia mellifera Greene, Keckiella antirrhinoides Benth). When connected to donor plants by hyphal linkages, deuterium was detected in the transpiration flux of receiver oak plants, and dye-labelled extraradical hyphae, rhizomorphs, mantles, and Hartig nets were observed in receiver EM oak roots, and in AMF hyphae of Salvia. Hyphal labelling was scarce in Eriogonum and Keckiella since these species are less dependent on AMF. The observed patterns of dye distribution also indicated that only a small percentage of mycorrhizal roots and extraradical hyphae were involved with water transfer among plants. Our results suggest that the movement of water by CMNs is potentially important to plant survival during drought, and that the functional ecophysiological traits of individual mycorrhizal fungi may be a component of this mechanism.


Subject(s)
Fungi/physiology , Mycorrhizae/physiology , Plant Physiological Phenomena , Plant Roots/physiology , Plant Transpiration , Water/physiology , Biological Transport , Botany/methods
8.
Oecologia ; 134(1): 55-64, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12647179

ABSTRACT

Symbiotic mycorrhizal fungi play an important role in the absorption of soil nutrients and water by most plants. It has been suggested that hydraulically lifted water might maintain the integrity of the external mycorrhizal mycelium during drought. We tested this hypothesis in the obligately mycorrhizal species, coast live oak (Quercus agrifolia), using a microcosm system that separated the effects of hydraulic lift in roots from those in the external mycelium. Mycorrhizal oak seedlings were established in microcosms comprising three discrete compartments for (1) upper roots, (2) tap roots, and (3) external fungal mycelium. Eight months after planting, a drought treatment was initiated: irrigation to the upper root and fungal chambers was terminated and only irrigation to the taproot compartment was maintained. After 3, 12, 30, 50, 70 and 80 days of drought, tracers were injected into the taproot compartment at dusk. At dawn the following morning, mycorrhizal hyphae (EM and AM) and spores (AM) in upper root and fungal compartments were extensively labeled with the tracers. In contrast, no labeling was observed when tracers were injected into the taproot compartment during daytime. Nocturnal water translocation from plant to mycorrhizal fungi occurred in association with hydraulic lift. Saprotrophic/parasitic fungi in the microcosms were not labeled, suggesting a direct water transfer from plants to their mycorrhizal mutualists and not to other fungi in the soil. Even after prolonged drought (70-80 days), mycorrhizal hyphae persisted in soils with water potential values as low as -20 MPa. Maintaining mycorrhizal activity through direct water translocation could potentially improve the nutrient status of deep-rooted plants during periods when the fertile upper soil is dry.


Subject(s)
Fungi/metabolism , Quercus/metabolism , Quercus/microbiology , Soil/analysis , Symbiosis , Water/metabolism , Disasters , Plant Roots/metabolism , Plant Roots/microbiology , Plant Transpiration , Rain
SELECTION OF CITATIONS
SEARCH DETAIL
...