Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 10(2)2017 07.
Article in English | MEDLINE | ID: mdl-28724081

ABSTRACT

For more than three decades, served as a model for plant biology research. At present only a few protein families have been studied in detail in . This study focused on all sequences with lectin motifs in the genome of . Based on amino acid sequence similarity (BLASTp searches), 217 putative lectin genes were retrieved belonging to 9 out of 12 different lectin families. The domain organization and genomic distribution for each lectin family were analyzed. Domain architecture analysis revealed that most of these lectin gene sequences are linked to other domains, often belonging to protein families with catalytic activity. Many protein domains identified are known to play a role in stress signaling and defense, suggesting a major contribution of the putative lectins in development and plant defense. This genome-wide screen for different lectin motifs will help to unravel the functional characteristics of lectins. In addition, phylogenetic trees and WebLogos were created and showed that most lectin sequences that share the same domain architecture evolved together. Furthermore, the amino acids responsible for carbohydrate binding are largely conserved. Our results provide information about the evolutionary relationships and functional divergence of the lectin motifs in .


Subject(s)
Arabidopsis/genetics , Genome, Plant , Lectins/metabolism , Catalysis , Evolution, Molecular , Lectins/genetics , Multigene Family
2.
Int J Mol Sci ; 18(6)2017 May 25.
Article in English | MEDLINE | ID: mdl-28587095

ABSTRACT

Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsisthaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.


Subject(s)
Evolution, Molecular , Lectins/genetics , Protein Domains/genetics , Computational Biology/methods , Databases, Genetic , Lectins/chemistry , Phylogeny , Plant Lectins/chemistry , Plant Lectins/genetics , Plants/classification , Plants/genetics , Species Specificity
3.
Front Plant Sci ; 8: 2218, 2017.
Article in English | MEDLINE | ID: mdl-29375596

ABSTRACT

Plants are constantly exposed to a wide range of environmental stresses, but evolved complicated adaptive and defense mechanisms which allow them to survive in unfavorable conditions. These mechanisms protect and defend plants by using different immune receptors located either at the cell surface or in the cytoplasmic compartment. Lectins or carbohydrate-binding proteins are widespread in the plant kingdom and constitute an important part of these immune receptors. In the past years, lectin research has focused on the stress-inducible lectins. The Nicotiana tabacum agglutinin, abbreviated as Nictaba, served as a model for one family of stress-related lectins. Here we focus on three non-chimeric Nictaba homologs from Arabidopsis thaliana, referred to as AN3, AN4, and AN5. Confocal microscopy of ArathNictaba enhanced green fluorescent protein (EGFP) fusion constructs transiently expressed in N. benthamiana or stably expressed in A. thaliana yielded fluorescence for AN4 and AN5 in the nucleus and the cytoplasm of the plant cell, while fluorescence for AN3 was only detected in the cytoplasm. RT-qPCR analysis revealed low expression for all three ArathNictabas in different tissues throughout plant development. Stress application altered the expression levels, but all three ArathNictabas showed a different expression pattern. Pseudomonas syringae infection experiments with AN4 and AN5 overexpression lines demonstrated a significantly higher tolerance of several transgenic lines to P. syringae compared to wild type plants. Finally, AN4 was shown to interact with two enzymes involved in plant defense, namely TGG1 and BGLU23. Taken together, our data suggest that the ArathNictabas represent stress-regulated proteins with a possible role in plant stress responses. On the long term this research can contribute to the development of more stress-resistant plants.

4.
BMC Plant Biol ; 16(1): 213, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27716048

ABSTRACT

BACKGROUND: A small group of F-box proteins consisting of a conserved F-box domain linked to a domain homologous to the glycan-binding protein has been identified within the genome of Arabidopsis thaliana. Previously, the so-called F-box-Nictaba protein, encoded by the gene At2g02360, was shown to be a functional lectin which binds N-acetyllactosamine structures. Here, we present a detailed qRT-PCR expression analysis of F-box-Nictaba in Arabidopsis plants upon different stresses and hormone treatments. RESULTS: Expression of the F-box-Nictaba gene was enhanced after plant treatment with salicylic acid and after plant infection with the virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000). ß-glucuronidase histochemical staining of transgenic Arabidopsis plants displayed preferential activity of the At2g02360 promoter in trichomes present on young rosette leaves. qRT-PCR analyses confirmed high expression of F-box-Nictaba in leaf trichomes. A. thaliana plants overexpressing the gene showed less disease symptoms after Pst DC3000 infection with reduced bacterial colonization compared to infected wild type and F-box-Nictaba knock-out plants. CONCLUSIONS: Our data show that the Arabidopsis F-box-Nictaba gene is a stress-inducible gene responsive to SA, bacterial infection and heat stress, and is involved in salicylic acid related plant defense responses. This knowledge enriched our understanding of the physiological importance of F-box-Nictaba, and can be used to create plants with better performance in changing environmental conditions.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/microbiology , F-Box Proteins/genetics , Plants, Genetically Modified/microbiology , Pseudomonas syringae/physiology , Up-Regulation , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , F-Box Proteins/metabolism , Hot Temperature/adverse effects , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Salicylic Acid/pharmacology , Trichomes/metabolism , Trichomes/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL