Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(22): 23209-23219, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854547

ABSTRACT

Poloxamers (P184, P188, and P407) have been investigated as the carrier system for eugenol or thymol. A synergic effect of mixed Poloxamers was proved by enhanced micellar parameters, with a lower critical micelle concentration (about 0.06 mM) and the highest surface adsorption of 9 × 10-7 mol m-2 for P188/P407. Dynamic light scattering revealed a decrease in micellar size after loading with biomolecules. Three mathematical models were applied to study the release kinetics, of which Korsmeyer-Peppas was the best fitted model. Higher relative release was observed for Poloxamer/eugenol samples, up to a value of 0.8. Poloxamer micelles with thymol were highly influential in bacterial reduction. Single P407/eugenol micelles proved to be bacteriostatic for up to 6 h for S. aureus or up to 48 h for E. coli. Mixed micelles were confirmed to have prolonged bacteriostatic activity for up to 72 h against both bacteria. This trend was also proven by the modified Gompertz model. An optimized P188/P407/eugenol micelle was successfully used as a model system for release study with a particle size of less than 30 nm and high encapsulation efficiency surpassing 90%. The developed mixed micelles were proved to have antibiofilm activity, and thus they provide an innovative approach for controlled release with potential in topical applications.

2.
Gels ; 9(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37232962

ABSTRACT

Comedogenic skin care receives little attention compared to the care or treatment of more serious acne manifestations. Traditional therapies may have limited success with potential side effects. Cosmetic care supported by the effect of a biostimulating laser may offer a desirable alternative. The aim of the study was to evaluate the biological effectiveness of combined cosmetic treatment with lasotherapy on comedogenic skin type using noninvasive bioengineering methods. Twelve volunteers with comedogenic skin type underwent a 28-week application of Lasocare Basic 645® cosmetic gel containing Lactoperoxidase and Lactoferrin in combination with laser therapy (Lasocare® method). The effect of treatment on skin condition was monitored using noninvasive diagnostic methods. The parameters were the amount of sebum, the pore count, the ultraviolet-induced red fluorescence assessment of comedonic lesions (percentage of the area and quantification of orange-red spots), hydration, transepidermal water loss, and pH. A statistically significant decrease in sebum production was observed on the skin of the treated volunteers, as well as a decrease in porphyrins, indicating the presence of Cutibacterium acnes populating comedones and causing enlarged pores. The balance of epidermal water in the skin was regulated adjusting the acidity of the skin coat in individual zones, which decreased the presence of Cutibacterium acnes. Cosmetic treatment in combination with the Lasocare® method successfully improved the condition of comedogenic skin. In addition to transient erythema, there were no other adverse effects. The chosen procedure appears to be a suitable and safe alternative to traditional treatment procedures known from dermatological practice.

3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835267

ABSTRACT

Antimicrobial hand gels have become extremely popular in recent years due to the COVID-19 pandemic. Frequent use of hand sanitising gel can lead to dryness and irritation of the skin. This work focuses on the preparation of antimicrobial acrylic acid (Carbomer)-based gels enhanced by non-traditional compounds-mandelic acid and essential oils-as a substitute for irritating ethanol. Physicochemical properties (pH and viscosity), stability and sensory attributes of the prepared gels were investigated. Antimicrobial activity against representative Gram-positive and Gram-negative bacteria and yeasts was determined. The prepared gels with mandelic acid and essential oil (cinnamon, clove, lemon, and thyme) proved to have antimicrobial activity and even better organoleptic properties than commercial ethanol-based antimicrobial gel. Further, results confirmed that the addition of mandelic acid had a desirable effect on gel properties (antimicrobial, consistency, stability). It has been shown that the essential oil/mandelic acid combination can be a dermatologically beneficial hand sanitiser compared to commercial products. Thus, the produced gels can be used as a natural alternative to alcohol-based daily hand hygiene sanitisers.


Subject(s)
Anti-Infective Agents , COVID-19 , Hand Sanitizers , Oils, Volatile , Humans , Anti-Bacterial Agents , Pandemics , Gram-Negative Bacteria , Gram-Positive Bacteria , Ethanol , Gels , Microbial Sensitivity Tests
4.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481539

ABSTRACT

Honey, honey extracts, and bee products belong to traditionally used bioactive molecules in many areas. The aim of the study was primarily to evaluate the effect of cosmetic matrices containing honey and bee products on the skin. The study is complemented by a questionnaire survey on the knowledge and awareness of the effects and potential uses of bee products. The effect of bee molecules at various concentrations was observed by applying 12 formulations to the skin of the volar side of the forearm by non-invasive bioengineering methods on a set of 24 volunteers for 48 h. Very good moisturizing properties have been found in matrices with the glycerin extract of honey. Matrices containing forest honey had better moisturizing effects than those containing flower honey. Barrier properties were enhanced by gradual absorption, especially in formulations with both glycerin and aqueous honey extract. The observed organoleptic properties of the matrices assessed by sensory analysis through 12 evaluators did not show statistically significant differences except for color and spreadability. There are differences in the ability to hydrate the skin, reduce the loss of epidermal water, and affect the pH of the skin surface, including the organoleptic properties between honey and bee product matrices according to their type and concentration.


Subject(s)
Bees , Cosmetics , Animals , Emulsions/chemistry , Honey , Hydrogen-Ion Concentration , Surveys and Questionnaires
5.
Polymers (Basel) ; 11(12)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783677

ABSTRACT

Caseinate-stabilized emulsions of black cumin (Nigella sativa) and tamanu (Calophyllum inophyllum) oils were studied in terms of preparation, characterization, and antibacterial properties. The oils were described while using their basic characteristics, including fatty acid composition and scavenging activity. The oil-in-water (o/w) emulsions containing the studied oils were formulated, and the influence of protein stabilizer (sodium caseinate (CAS), 1-12 wt%), oil contents (5-30 wt%), and emulsification methods (high-shear homogenization vs sonication) on the emulsion properties were investigated. It was observed that, under both preparation methods, emulsions of small, initial droplet sizes were predominantly formed with CAS content that was higher than 7.5 wt%. Sonication was a more efficient emulsification procedure and was afforded emulsions with smaller droplet size throughout the entire used concentration ranges of oils and CAS when compared to high-shear homogenization. At native pH of ~ 6.5, all of the emulsions exhibited negative zeta potential that originated from the presence of caseinate. The antibacterial activities of both oils and their emulsions were investigated with respect to the growth suppression of common spoilage bacteria while using the disk diffusion method. The oils and selected emulsions were proven to act against gram positive strains, mainly against Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus); regrettably, the gram negative species were fully resistant against their action.

6.
J Cosmet Dermatol ; 18(5): 1410-1415, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30701646

ABSTRACT

BACKGROUND: Cosmetic products mean any substance or mixture intended to be placed in contact with the external parts of the human body (eg, epidermis, lips) and should not pass to the lower parts and penetrate to the skin. As a part of evaluation of cosmetic safety, the transdermal absorption of substances should be investigated. MATERIALS AND METHODS: In vitro absorption was investigated with Franz diffusion cells on untreated porcine skin and specimens of the same treated with 15%wt. SLS. The integrity of the skin was discerned by gauging transdermal electrical conductivity (TEC), the concentration of caffeine absorbed by the samples of skin membrane by liquid chromatography, which took place by applying an emulsion and/or a gel containing active hydration agents (urea, sodium hyaluronate, and sericin). RESULTS: The greatest extent of caffeine penetration was seen for pretreatment with just SLS; similar results were in skin treated with the base gel with 10%wt. urea. In the skin treated with the base emulsion only, the amount of caffeine absorbed was twofold less; this increased after adding the active hydration substances. The values measured for TEC corresponded with the amount of caffeine absorbed. CONCLUSION: The gel proved to be the more potent vehicle for the active ingredient, as it demonstrated greater transdermal caffeine penetration than the emulsions, correlating with the degree of damage to the skin as detected by TEC.

7.
J Cosmet Dermatol ; 18(1): 346-354, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29577586

ABSTRACT

BACKGROUND: Panthenol is an active substance used in dermatology to protect the health of the skin, to treat defects in the morphology of the stratum corneum. In cosmetology, hydrating, softening, and barrier function of panthenol are utilized. Detailed studies evaluating the efficacy of panthenol in cosmetic and pharmaceutical semisolid formulations and establishing its optimum concentration are needed. OBJECTIVES: To investigate whether an addition of 5-13 wt% panthenol in o/w and w/o emulsions increases hydration and supports the barrier properties of the skin. Rheological properties and sensory analysis of prepared formulations are supplemented. METHODS: Noninvasive instrumental methods in vivo were used. The hydration and barrier effect of semisolid formulations on the skin were observed for 48 hour; testing was conducted on 40 women. The effect was compared with formulations without any content of panthenol. The rheological and organoleptic properties of the formulations were evaluated. RESULTS: After applying either form of the formulations containing 7-11 wt% of panthenol hydration of the skin increased, transepidermal water loss decreased. pH of the skin shifted toward neutral after application of tested formulations. The rheological properties of the formulations were influenced by the type of vehicle, the amount of panthenol, and temperature. Sensory evaluation of both semisolid forms revealed statistically significant differences in o/w formulations with regard to spreadability. CONCLUSIONS: The presence of panthenol in an o/w and w/o semisolid formulations significantly enhances skin barrier repair and hydration of the stratum corneum. Better vehicle for the active substance as regards hydration proved o/w formulations.


Subject(s)
Dermatologic Agents/pharmacology , Epidermis/physiology , Pantothenic Acid/analogs & derivatives , Skin Physiological Phenomena/drug effects , Water/metabolism , Adult , Cosmetics/pharmacology , Drug Compounding , Emulsions/pharmacology , Epidermis/drug effects , Female , Humans , Hydrophobic and Hydrophilic Interactions , Middle Aged , Pantothenic Acid/pharmacology , Rheology , Sensation/drug effects , Water Loss, Insensible/drug effects , Young Adult
8.
Braz. J. Pharm. Sci. (Online) ; 54(3): e17693, 2018. tab, graf
Article in English | LILACS | ID: biblio-974408

ABSTRACT

The aim of the paper is to test stability and biophysical properties of hydrophilic and lipophilic emulsions with selected vegetable seed oils: Limnanthes alba, Prunus amygdalus dulcis, Cannabis sativa, Rosa rubiginosa and Hellianthus annuus. Biophysical properties of emulsions are investigated in vivo using non-invasive instrumental methods (corneometry, tewametry and pH) in a group of 12 healthy women volunteers. Their stability profiles (colour, phase separation and centrifugation) under various temperatures (9, 25, 37 and 57 °C) and storage time (24 hours, 2, 7, 14, 21 and 28 days) were monitored. The moisturising activities of the emulsions supplemented with various oils were comparable. The lipophilic emulsions showed a better ability to improve the condition of the skin barrier due to formation of a surface lipid film. The tested formulations regulated the pH of the skin towards neutral values. Lipophilic emulsions showed earlier phase separation and changes in colour. The greatest resistance to thermal stress during storage was observed for the emulsion bases. Emulsions containing oils, except for those with rosehip and hempseed oils, were stable up to the temperature of 37 °C. The studied emulsion systems are excellent vehicles of vegetable oils and exhibit relatively good stability, benefiting the natural properties of skin.


Subject(s)
Humans , Female , Plant Oils/analysis , Emulsions/analysis , Cosmetic Stability , Fluid Therapy/adverse effects
9.
J Vis Exp ; (129)2017 11 27.
Article in English | MEDLINE | ID: mdl-29286371

ABSTRACT

Keratin hydrolysates (KHs) are established standard components in hair cosmetics. Understanding the moisturizing effects of KH is advantageous for skin-care cosmetics. The goals of the protocol are: (1) to process chicken feathers into KH by alkaline-enzymatic hydrolysis and purify it by dialysis, and (2) to test if adding KH into an ointment base (OB) increases hydration of the skin and improves skin barrier function by diminishing transepidermal water loss (TEWL). During alkaline-enzymatic hydrolysis feathers are first incubated at a higher temperature in an alkaline environment and then, under mild conditions, hydrolyzed with proteolytic enzyme. The solution of KH is dialyzed, vacuum dried, and milled to a fine powder. Cosmetic formulations comprising from oil in water emulsion (O/W) containing 2, 4, and 6 weight% of KH (based on the weight of the OB) are prepared. Testing the moisturizing properties of KH is carried out on 10 men and 10 women at time intervals of 1, 2, 3, 4, 24, and 48 h. Tested formulations are spread at degreased volar forearm sites. The skin hydration of stratum corneum (SC) is assessed by measuring capacitance of the skin, which is one of the most world-wide used and simple methods. TEWL is based on measuring the quantity of water transported per a defined area and period of time from the skin. Both methods are fully non-invasive. KH makes for an excellent occlusive; depending on the addition of KH into OB, it brings about a 30% reduction in TEWL after application. KH also functions as a humectant, as it binds water from the lower layers of the epidermis to the SC; at the optimum KH addition in the OB, up to 19% rise in hydration in men and 22% rise in women occurs.


Subject(s)
Chickens , Cosmetics/chemistry , Feathers/chemistry , Keratins/chemistry , Peptide Hydrolases/chemistry , Animals
10.
Biointerphases ; 12(2): 021006, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28614949

ABSTRACT

The aim of this research was to evaluate mutual interchangeability of four principally different biometric instrumental techniques designed for objective measurement of changes in the physical, mechanical, and topographical properties of the skin surface treated with commercial antiaging cosmetic products with hyaluronic acid. The following instrumental devices were used: Visioscope PC 35, Corneometer Multiprobe Adapter MPA 6, Reviscometer RVM 600, and 3D scanner Talysurf CLI 500. The comparison of the individual methods was performed using cluster analysis. The study involved 25 female volunteers aged 40-65. Measurements were taken before and after 30 daily in vivo applications of an antiaging preparation to the skin surface in the periorbital area. A slight reduction in skin surface roughness was recorded in 55% of the volunteers. On the contrary, a worsening from their initial states was detected in 25% of the subjects, while for 20%, no significant change was reported. Cluster analysis confirmed that the mentioned methodologies can be divided into two basic clusters, namely, a cluster of methods recording the changes in skin relief by means of optical techniques, and a cluster of methods investigating changes in hydration and anisotropy. In practice, the techniques in different clusters are not interchangeable and should be assessed separately.


Subject(s)
Biometry/methods , Chemical Phenomena , Cosmetics/administration & dosage , Hyaluronic Acid/administration & dosage , Skin/drug effects , Surface Properties , Viscosupplements/administration & dosage , Adult , Female , Healthy Volunteers , Humans , Middle Aged
11.
J Cosmet Dermatol ; 16(4): e21-e27, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28164425

ABSTRACT

BACKGROUND: Although keratin hydrolysates have become established as standard components in hair and nail cosmetics, studies on the moisturizing effects of keratin hydrolysates do not appear among contemporary literature. OBJECTIVES: To test if adding keratin hydrolysate into an ointment base increases hydration of the skin and improves skin barrier function, or diminishes trans-epidermal water loss. METHODS: Formulations were prepared containing 2%, 4%, and 6% keratin hydrolysates (based on weight of the ointment base). The moisturizing properties of keratin hydrolysates were tested by measuring skin hydration, trans-epidermal water loss and skin pH; measurements were carried out at intervals of 1, 2, 3, 4, 24, and 48 h. Testing was conducted on 10 women. RESULTS: As regards hydration, adding 2% keratin hydrolysate to the ointment base is optimal, as an increase of 14%-23% occurs in hydration of the stratum corneum. For trans-epidermal water loss, adding 4% KH to the ointment base is preferential, as this triggers a 26%-46% decrease in trans-epidermal water loss. CONCLUSIONS: Keratin hydrolysate acts as a humectant (it binds water from lower layers of the epidermis to the stratum corneum) as well as an occlusive (it reduces trans-epidermal water loss). The highly favorable properties of keratin hydrolysates are attributed to the wide distribution of keratin hydrolysates molecular weights; low-molecular weight fractions easily penetrate the SC, while high-molecular weight fractions form a protective film on the epidermis. Adding keratin hydrolysates to the ointment base did not cause phase separation even after 6 mo storage.


Subject(s)
Epidermis/drug effects , Epidermis/physiology , Keratins/pharmacology , Protein Hydrolysates/pharmacology , Skin Physiological Phenomena/drug effects , Water/metabolism , Adult , Cosmetics/pharmacology , Epidermis/chemistry , Female , Humans , Hydrogen-Ion Concentration , Hygroscopic Agents/pharmacology , Ointments , Water Loss, Insensible/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...