Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cancer Res ; 11(9): 4364-4379, 2021.
Article in English | MEDLINE | ID: mdl-34659892

ABSTRACT

Tenascin-C is upregulated during inflammation and tumorigenesis, and its expression level is correlated with a poor prognosis in several malignancies. Nevertheless, the substantial role of tenascin-C in cancer progression is poorly understood. Previously, we found that a peptide derived from tenascin-C, termed TNIIIA2, acts directly on tumor cells to activate ß1-integrin and induce malignant progression. Here, we show that ß1-integrin activation by TNIIIA2 in human fibroblasts indirectly contributes to cancer progression through the induction of cellular senescence. Prolonged treatment of fibroblasts with TNIIIA2 induced cellular senescence, as characterized by the suppression of cell growth and the induction of senescence-associated-ß-galactosidase and p16INK4a expression. The production of reactive oxygen species and subsequent DNA damage were responsible for the TNIIIA2-induced senescence of fibroblasts. Interestingly, peptide FNIII14, which inactivates ß1-integrin, inhibited fibroblast senescence induced not only by TNIIIA2 but also by H2O2, suggesting that ß1-integrin activation plays a critical role in the induction of senescence in fibroblasts. Moreover, TNIIIA2-induced senescent fibroblasts secreted heparin-binding epidermal growth factor-like growth factor (HB-EGF), which caused preneoplastic epithelial HaCaT cells to acquire malignant properties, including colony-forming and focus-forming abilities. Thus, our study demonstrates that tenascin-C-derived peptide TNIIIA2 induces cellular senescence in fibroblasts through ß1-integrin activation, causing cancer progression via the secretion of humoral factors such as HB-EGF.

2.
J Biol Chem ; 285(10): 7006-15, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20007695

ABSTRACT

It has been postulated that inactivated beta1-integrins are involved in the disordered growth of hematopoietic tumor cells. We recently found that TNIIIA2, a peptide derived from tenascin-C, strongly activates beta1-integrins through binding with syndecan-4. We show here that Ramos Burkitt's lymphoma cells can survive and grow in suspension but undergo apoptosis when kept adhering to fibronectin by stimulation with TNIIIA2. Other integrin activators, Mg(2+) and TS2/16 (an integrin-activating antibody), were also capable of inducing apoptosis. The inactivation of ERK1/2 and Akt and the subsequent activation of Bad were involved in the apoptosis. The results using other hematopoietic tumor cell lines expressing different levels of fibronectin receptors (VLA-4 and VLA-5) showed that potentiated and sustained adhesion to fibronectin via VLA-4 causally induces apoptosis also in various types of hematopoietic tumor cells in addition to Ramos cells. Because TNIIIA2 requires syndecan-4 as a membrane receptor for activation of beta1-integrins, it induced apoptosis preferentially in hematopoietic tumor cells, which expressed both VLA-4 and syndecan-4 as membrane receptors mediating the effects of fibronectin and TNIIIA2, respectively. Therefore, normal peripheral blood cells, such as neutrophils, monocytes, and lymphocytes, which poorly expressed syndecan-4, were almost insusceptible to TNIIIA2-induced apoptosis. The TNIIIA2-related matricryptic site of TN-C could contribute, once exposed, to preventing prolonged survival of hematopoietic malignant progenitors through potentiated and sustained activation of VLA-4.


Subject(s)
Apoptosis/physiology , Cell Adhesion/physiology , Fibronectins/metabolism , Hematologic Neoplasms/metabolism , Integrin alpha4beta1/metabolism , Peptides/metabolism , Animals , Burkitt Lymphoma , Cell Line, Tumor , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibronectins/genetics , Hematologic Neoplasms/pathology , Humans , Integrin alpha4beta1/genetics , MAP Kinase Kinase Kinases/metabolism , Peptides/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Signal Transduction/physiology , Syndecan-4/genetics , Syndecan-4/metabolism , Tenascin/genetics , Tenascin/metabolism , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...