Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39269075

ABSTRACT

Persistent homology is a powerful tool for quantifying various structures, but it is equally crucial to maintain its interpretability. In this study, we extracted interpretable geometric features from the persistent diagrams (PDs) of scanning transmission electron microscopy (STEM) images of self-assembled Pt-CeO2 nanostructures synthesized under different annealing conditions. We focused on PD quadrants and extracted five interpretable features from the zeroth and first PDs of nanostructures ranging from maze-like to striped patterns. A combination of hierarchical clustering and inverse analysis of PDs reconstructed by principal component analysis through vectorization of the PDs highlighted the importance of the number of arc-like structures of the CeO2 phase in the first PDs, particularly those that were smaller than a characteristic size. This descriptor enabled us to quantify the degree of disorder, namely the density of bends, in nanostructures formed under different conditions. By using this descriptor along with the width of the CeO2 phase, we classified 12 Pt-CeO2 nanostructures in an interpretable way.

2.
Exploration (Beijing) ; 4(3): 20230040, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939863

ABSTRACT

Molecular hydrogen (H2) ortho-para conversion (O/P conversion) proceeds slowly at low temperatures accompanying a heat release. Thus, catalysts for accelerating this conversion rate are highly demanded in terms of the storage and utilization of liquid H2. The catalysts for this purpose are experimentally screened by examining a broad range of materials covering magnetic, non-magnetic, metallic, and nonmetallic oxides. The primary conclusions obtained are summarized below. (1) active materials are required to be non-metallic and to bear the cations with ionic radii smaller than the bond length of H2. (2) Metallic materials have almost no activity irrespective of with or without magnetism (3) The activity of materials belonging to (1) is largely enhanced when the constituting cation has a magnetic moment. In addition, there is a class of materials for which the activity is distinctly enhanced just upon substitution by the foreign ions.

3.
Phys Chem Chem Phys ; 26(19): 14103-14107, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695831

ABSTRACT

Metal-oxide nanocomposites (MONs) are of pivotal importance as electrode materials, yet lack a guiding principle to tune their phase texture. Here we report that the phase texture of MONs can be tuned at the nanoscale by controlling the nanophase separation of precursor alloys. In situ transmission electron microscopy (in situ TEM) has demonstrated that a MON material of platinum (Pt) and cerium oxide (CeO2) is obtained through promoted nanophase separation of a Pt5Ce precursor alloy in an atmosphere containing oxygen (O2) and carbon monoxide (CO). The Pt-CeO2 MON material comprised an alternating stack of nanometre-thick layers of Pt and CeO2 in different phase textures ranging from lamellae to mazes, depending on the O2 fraction in the atmosphere. Mathematical simulations have demonstrated that the phase texture of MONs originates from a balance in the atomic diffusions across the alloy precursor, which is controllable by the O2 fraction, temperature, and composition of the precursor alloys.

SELECTION OF CITATIONS
SEARCH DETAIL