Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(11)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38511658

ABSTRACT

Conformer-rotamer sampling tool (CREST) is an open-source program for the efficient and automated exploration of molecular chemical space. Originally developed in Pracht et al. [Phys. Chem. Chem. Phys. 22, 7169 (2020)] as an automated driver for calculations at the extended tight-binding level (xTB), it offers a variety of molecular- and metadynamics simulations, geometry optimization, and molecular structure analysis capabilities. Implemented algorithms include automated procedures for conformational sampling, explicit solvation studies, the calculation of absolute molecular entropy, and the identification of molecular protonation and deprotonation sites. Calculations are set up to run concurrently, providing efficient single-node parallelization. CREST is designed to require minimal user input and comes with an implementation of the GFNn-xTB Hamiltonians and the GFN-FF force-field. Furthermore, interfaces to any quantum chemistry and force-field software can easily be created. In this article, we present recent developments in the CREST code and show a selection of applications for the most important features of the program. An important novelty is the refactored calculation backend, which provides significant speed-up for sampling of small or medium-sized drug molecules and allows for more sophisticated setups, for example, quantum mechanics/molecular mechanics and minimum energy crossing point calculations.

2.
J Chem Theory Comput ; 19(22): 8097-8107, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37955590

ABSTRACT

For ground- and excited-state studies of large molecules, it is the state of the art to combine (time-dependent) DFT with dispersion-corrected range-separated hybrid functionals (RSHs), which ensures an asymptotically correct description of exchange effects and London dispersion. Specifically for studying excited states, it is common practice to tune the range-separation parameter ω (optimal tuning), which can further improve the accuracy. However, since optimal tuning essentially changes the functional, it is unclear if and how much the parameters used for the dispersion correction depend on the chosen ω value. To answer this question, we explore this interdependency by refitting the DFT-D4 dispersion model for six established RSHs over a wide range of ω values (0.05-0.45 a0-1) using a set of noncovalently bound molecular complexes. The results reveal some surprising differences among the investigated functionals: While PBE-based RSHs and ωB97M-D4 generally exhibit a weak interdependency and robust performance over a wide range of ω values, B88-based RSHs, specifically LC-BLYP, are strongly affected. For these, even a minor reduction of ω from the default value manifests in strong systematic overbinding and poor performance in the typical range of optimally tuned ω values. Finally, we discuss strategies to mitigate these issues and reflect the results in the context of the employed D4 parameter optimization algorithm and fit set, outlining strategies for future improvements.

3.
J Phys Chem A ; 127(33): 7036-7043, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37567769

ABSTRACT

We have developed a new method to accurately account for solvation effects in semiempirical quantum mechanics based on a polarizable continuum model (PCM). The extended conductor-like polarizable continuum model (CPCM-X) incorporates a computationally efficient domain decomposition conductor-like screening model (ddCOSMO) for extended tight binding (xTB) methods and uses a post-processing approach based on established solvation models, like the conductor-like screening model for real solvents (COSMO-RS) and the universal solvent model based on solute electron density (SMD). According to various benchmarks, the approach performs well across a broad range of systems and applications, including hydration free energies, non-aqueous solvation free energies, and large supramolecular association reactions of neutral and charged species. Our method for computing solvation free energies is much more accurate than the current methods in the xtb program package. It improves the accuracy of solvation free energies by up to 40% for larger supramolecular association reactions to match even the accuracy of higher-level DFT-based solvation models like COSMO-RS and SMD while being computationally more than 2 orders of magnitude faster. The proposed method and the underlying ddCOSMO model are readily available for a wide variety of solvents and are accessible in xtb for use in various computational applications.

4.
J Comput Chem ; 44(27): 2120-2129, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37401535

ABSTRACT

The semiempirical GFNn-xTB ( n = 1 , 2 ) tight-binding methods are extended with a spin-dependent energy term (spin-polarization), enabling the fast and efficient screening of different spin states for transition metal complexes. While GFNn-xTB methods inherently can not differentiate properly between high-spin (HS) and low-spin (LS) states, this shortcoming is corrected with the presented methods termed spGFNn-xTB. The performance of spGFNn-xTB methods for spin state energy splittings is evaluated on a newly compiled benchmark set of 90 complexes (27 HS and 63 LS complexes) containing 3d, 4d, and 5d transition metals (termed TM90S) employing DFT references at the TPSSh-D4/def2-QZVPP level of theory. The challenging TM90S set contains complexes with charges between - 4 and +3, spin multiplicities between 1 and 6, and spin-splitting energies that range from - 47.8 to 146.6 kcal/mol with a mean average of 32.2 kcal/mol. On this set the (sp)GFNn-xTB methods, the PM6-D3H4 method, and the PM7 method are evaluated with spGFN1-xTB yielding the lowest MAD of 19.6 kcal/mol followed by spGFN2-xTB with 24.8 kcal/mol. While for the 4d and 5d subsets small or no improvements are observed with spin-polarization, large improvements are obtained for the 3d subset with spGFN1-xTB yielding the smallest MAD of 14.2 kcal/mol followed by spGFN2-xTB with 17.9 kcal/mol and PM6-D3H4 with 28.4 kcal/mol. The correct sign of the spin state splittings is obtained with spGFN2-xTB in 89% of all cases closely followed by spGFN1-xTB with 88%. On the full set, a pure semiempirical vertical spGFN2-xTB//GFN2-xTB-based workflow for screening purposes yields a slightly better MAD of 22.2 kcal/mol due to error compensation, while being qualitative correct for one additional case. In combination with their low computational cost (scanning spin states in seconds), the spGFNn-xTB methods represent robust tools for pre-screening steps of spin state calculations and high-throughput workflows.

5.
Phys Chem Chem Phys ; 25(27): 17860-17868, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37378957

ABSTRACT

The computational treatment of large molecular structures is of increasing interest in fields of modern chemistry. Accordingly, efficient quantum chemical approaches are needed to perform sophisticated investigations on such systems. This engaged the development of the well-established "Our own N-layered integrated molecular orbital and molecular mechanics" (ONIOM) multi-layer scheme [L. W. Chung et al., Chem. Rev., 2015, 115, 5678-5796]. In this work, we present the specific implementation of the ONIOM scheme into the xtb semi-empirical extended tight-binding program package and its application to challenging transition-metal complexes. The efficient and broadly applicable GFNn-xTB and -FF methods are applied in the ONIOM framework to elucidate reaction energies, geometry optimizations, and explicit solvation effects for metal-organic systems with up to several hundreds of atoms. It is shown that an ONIOM-based combination of density functional theory, semi-empirical, and force-field methods can be used to drastically reduce the computational costs and thus enable the investigation of huge systems at almost no significant loss in accuracy.

6.
J Phys Chem A ; 126(22): 3521-3535, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35616628

ABSTRACT

We present the first benchmark set focusing on the conformational energies of highly flexible, long n-alkane chains, termed ACONFL. Unbranched alkanes are ubiquitous building blocks in nature, so the goal is to be able to calculate their properties most accurately to improve the modeling of, e.g., complex (biological) systems. Very accurate DLPNO-CCSD(T1)/CBS reference values are provided, which allow for a statistical meaningful evaluation of even the best available density functional methods. The performance of established and modern (dispersion corrected) density functionals is comprehensively assessed. The recently introduced r2SCAN-V functional shows excellent performance, similar to efficient composite DFT methods like B97-3c and r2SCAN-3c, which provide an even better cost-accuracy ratio, while almost reaching the accuracy of much more computationally demanding hybrid or double hybrid functionals with large QZ AO basis sets. In addition, we investigated the performance of common wave function methods, where MP2/CBS surprisingly performs worse compared to the simple D4 dispersion corrected Hartree-Fock. Furthermore, we investigate the performance of several semiempirical and force field methods, which are commonly used for the generation of conformational ensembles in multilevel workflows or in large scale molecular dynamics studies. Outstanding performance is obtained by the recently introduced general force field, GFN-FF, while other commonly applied methods like the universal force field yield large errors. We recommend the ACONFL as a helpful benchmark set for parametrization of new semiempirical or force field methods and machine learning potentials as well as a meaningful validation set for newly developed DFT or dispersion methods.


Subject(s)
Benchmarking , Quantum Theory , Alkanes , Molecular Conformation , Thermodynamics
7.
J Chem Phys ; 156(13): 134105, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35395897

ABSTRACT

The regularized and restored semilocal meta-generalized gradient approximation (meta-GGA) exchange-correlation functional r2SCAN [Furness et al., J. Phys. Chem. Lett. 11, 8208-8215 (2020)] is used to create three global hybrid functionals with varying admixtures of Hartree-Fock "exact" exchange (HFX). The resulting functionals r2SCANh (10% HFX), r2SCAN0 (25% HFX), and r2SCAN50 (50% HFX) are combined with the semi-classical D4 London dispersion correction. The new functionals are assessed for the calculation of molecular geometries, main-group, and metalorganic thermochemistry at 26 comprehensive benchmark sets. These include the extensive GMTKN55 database, ROST61, and IONPI19 sets. It is shown that a moderate admixture of HFX leads to relative improvements of the mean absolute deviations for thermochemistry of 11% (r2SCANh-D4), 16% (r2SCAN0-D4), and 1% (r2SCAN50-D4) compared to the parental semi-local meta-GGA. For organometallic reaction energies and barriers, r2SCAN0-D4 yields an even larger mean improvement of 35%. The computation of structural parameters (geometry optimization) does not systematically profit from the HFX admixture. Overall, the best variant r2SCAN0-D4 performs well for both main-group and organometallic thermochemistry and is better or on par with well-established global hybrid functionals, such as PW6B95-D4 or PBE0-D4. Regarding systems prone to self-interaction errors (SIE4x4), r2SCAN0-D4 shows reasonable performance, reaching the quality of the range-separated ωB97X-V functional. Accordingly, r2SCAN0-D4 in combination with a sufficiently converged basis set [def2-QZVP(P)] represents a robust and reliable choice for general use in the calculation of thermochemical properties of both main-group and organometallic chemistry.

8.
J Chem Phys ; 155(20): 204801, 2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34852489

ABSTRACT

Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and interoperable interfaces that work with existing community codes to provide more functionality and composability than could be achieved with a single program. The Quantum Chemistry Common Driver and Databases (QCDB) project provides such capability through an application programming interface (API) that facilitates interoperability across multiple quantum chemistry software packages. In tandem with the Molecular Sciences Software Institute and their Quantum Chemistry Archive ecosystem, the unique functionalities of several CMS programs are integrated, including CFOUR, GAMESS, NWChem, OpenMM, Psi4, Qcore, TeraChem, and Turbomole, to provide common computational functions, i.e., energy, gradient, and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency analysis. Both standard users and power users benefit from adopting these APIs as they lower the language barrier of input styles and enable a standard layout of variables and data. These designs allow end-to-end interoperable programming of complex computations and provide best practices options by default.

9.
J Chem Phys ; 155(10): 104101, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34525835

ABSTRACT

In this work, we present an altered partition function that leads to an improved calculation of the enthalpy and entropy of vaporization in the framework of quantum cluster equilibrium theory. The changes are based on a previously suggested modification [S. Grimme, Chem. Eur. J. 18, 9955-9964 (2012)] of the molecular entropy calculation in the gas phase. Here, the low energy vibrational frequencies in the vibrational partition function are treated as hindered rotations instead of vibrations. The new scheme is tested on a set of nine organic solvents for the calculation of the enthalpy and entropy of vaporization. The enthalpies and entropies of vaporization show improvements from 6.5 error to 3.3 kJ mol-1 deviation to experiment and from 28.4 error to 13.5 J mol-1 K-1 deviation to experiment, respectively. The effect of the corrected partition function is visible in the different populations of clusters, which become physically more meaningful in that larger clusters are higher populated in the liquid phase and the gas phase is mainly populated by the monomers. Furthermore, the corrected partition function also overcomes technical difficulties and leads to an increased stability of the calculations in regard to the size of the cluster set.

10.
Chemistry ; 27(47): 12104-12114, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34076908

ABSTRACT

Attachment of a pair of P-stereogenic mesityl(alkynyl)phosphanyl groups at the 4- and 5-positions of a 9,9-dimethylxanthene framework gave mixtures of the respective rac- and meso-bisphosphanyl diastereoisomers. They slowly epimerized in a thermally induced reaction with Gibbs activation barriers of about 25 kcal mol-1 at room temperature (measured and DFT calculated). The reaction of the meso-mesityl(tert-butylethynyl)phosphanyl derivative with two molar equivalents of Piers' borane [HB(C6 F5 )2 ] led to the formation of the alkylidene-bridged geminal bisphosphane/borane-frustrated Lewis pair system. The compound was obtained enriched (>85 %) in the rac diastereoisomer. With a variety of bifunctional donor substrates, the rac-bis-P/B FLP formed macrocyclic compounds. They were all formally derived from meso-configurated diastereoisomers of the bisphosphanylxanthene backbone.

11.
J Chem Theory Comput ; 17(7): 4250-4261, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34185531

ABSTRACT

We present a robust and efficient method to implicitly account for solvation effects in modern semiempirical quantum mechanics and force fields. A computationally efficient yet accurate solvation model based on the analytical linearized Poisson-Boltzmann (ALPB) model is parameterized for the extended tight binding (xTB) and density functional tight binding (DFTB) methods as well as for the recently proposed GFN-FF general force field. The proposed methods perform well over a broad range of systems and applications, from conformational energies over transition-metal complexes to large supramolecular association reactions of charged species. For hydration free energies of small molecules, GFN1-xTB(ALPB) is reaching the accuracy of sophisticated explicitly solvated approaches, with a mean absolute deviation of only 1.4 kcal/mol compared to the experiment. Logarithmic octanol-water partition coefficients (log Kow) are computed with a mean absolute deviation of about 0.65 using GFN2-xTB(ALPB) compared to experimental values indicating a consistent description of differential solvent effects. Overall, more than twenty solvents for each of the six semiempirical methods are parameterized and tested. They are readily available in the xtb and dftb+ programs for diverse computational applications.

12.
J Chem Phys ; 154(6): 061101, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33588552

ABSTRACT

We combine a regularized variant of the strongly constrained and appropriately normed semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)] with the latest generation semi-classical London dispersion correction. The resulting density functional approximation r2SCAN-D4 has the speed of generalized gradient approximations while approaching the accuracy of hybrid functionals for general chemical applications. We demonstrate its numerical robustness in real-life settings and benchmark molecular geometries, general main group and organo-metallic thermochemistry, and non-covalent interactions in supramolecular complexes and molecular crystals. Main group and transition metal bond lengths have errors of just 0.8%, which is competitive with hybrid functionals for main group molecules and outperforms them for transition metal complexes. The weighted mean absolute deviation (WTMAD2) on the large GMTKN55 database of chemical properties is exceptionally small at 7.5 kcal/mol. This also holds for metal organic reactions with an MAD of 3.3 kcal/mol. The versatile applicability to organic and metal-organic systems transfers to condensed systems, where lattice energies of molecular crystals are within the chemical accuracy (errors <1 kcal/mol).

13.
J Chem Phys ; 154(6): 064103, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33588555

ABSTRACT

The recently proposed r2SCAN meta-generalized-gradient approximation (mGGA) of Furness and co-workers is used to construct an efficient composite electronic-structure method termed r2SCAN-3c. To this end, the unaltered r2SCAN functional is combined with a tailor-made triple-ζ Gaussian atomic orbital basis set as well as with refitted D4 and geometrical counter-poise corrections for London-dispersion and basis set superposition error. The performance of the new method is evaluated for the GMTKN55 database covering large parts of chemical space with about 1500 data points, as well as additional benchmarks for non-covalent interactions, organometallic reactions, and lattice energies of organic molecules and ices, as well as for the adsorption on polar salt and non-polar coinage-metal surfaces. These comprehensive tests reveal a spectacular performance and robustness of r2SCAN-3c: It by far surpasses its predecessor B97-3c at only twice the cost and provides one of the best results of all semi-local density-functional theory (DFT)/QZ methods ever tested for the GMTKN55 database at one-tenth of the cost. Specifically, for reaction and conformational energies as well as non-covalent interactions, it outperforms prominent hybrid-DFT/QZ approaches at two to three orders of magnitude lower cost. Perhaps, the most relevant remaining issue of r2SCAN-3c is self-interaction error (SIE), owing to its mGGA nature. However, SIE is slightly reduced compared to other (m)GGAs, as is demonstrated in two examples. After all, this remarkably efficient and robust method is chosen as our new group default, replacing previous composite DFT and partially even expensive high-level methods in most standard applications for systems with up to several hundreds of atoms.

14.
Phys Chem Chem Phys ; 22(16): 8499-8512, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32292979

ABSTRACT

We present an extension of the DFT-D4 model [J. Chem. Phys., 2019, 150, 154122] for periodic systems. The main new ingredients are additional reference polarizabilities for highly-coordinated group 1-5 elements derived from pseudo-periodic electrostatically-embedded cluster calculations. To illustrate the performance of the updated method, several test cases are considered, for which we compare D4 to its predecessor D3(BJ), as well as to a comprehensive set of other dispersion-corrected methods. The largest improvements are observed for solid-state polarizabilities of 16 inorganic salts, where the D4 model achieves an unprecedented accuracy, surpassing its predecessor as well as other, computationally much more demanding approaches. For cell volumes and lattice energies of two sets of chemically diverse molecular crystals, the accuracy gain is less pronounced compared to the already excellently performing D3(BJ) method. For the challenging adsorption energies of small organic molecules on metallic as well as on ionic surfaces, DFT-D4 provides values in good agreement with experimental and/or high-level references. These results suggest the application of the proposed D4 model as a physically improved yet computationally efficient dispersion correction for standard DFT calculations as well as low-cost approaches like semi-empirical or even force-field models.

15.
Phys Chem Chem Phys ; 21(33): 18048-18058, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31219481

ABSTRACT

The design, implementation, and evaluation of a computationally efficient approach for exploring the chemical nature and bulk properties of the super-heavy main-group elements (SHEs) Cn-Og with nuclear charges of Z = 112-118 is described. The approach combines plane-wave density-functional theory (DFT) based on a newly devised set of projector-augmented wave potentials (PAWs) with the D3 dispersion correction, whose parameter-space is extended for this purpose. Regarding both, the fitting of the PAWs as well as the calculation of the D3 parameters, it is shown that the peculiar electronic structure of the SHEs with strong relativistic effects makes it necessary to adapt the well established computational protocols. Eventually, the methodology is tested employing various common functionals (PW91, PBE, PBE-D3, PBE0-D3, PBEsol and SCAN) by comparison to experimental and high-level results for the bulk of Cn and Og, as well as by calculating adsorption energies of Cn-Og on a gold surface and comparing these to the lighter congeners Hg-Rn as well as experimentally derived data. These tests establish that our approach provides a consistent and accurate description of the reactivity of the SHEs and is largely in excellent agreement with experimental and high-level references, and moreover underline the great relevance of dispersion interactions, as well the game-changing impact of spin-orbit coupling on SHE reactivity. Ultimately, the conducted calculations provide novel insights into the chemical behavior and nature of the SHEs, showcase the breakdown of periodic trends in the seventh period, and allow us to revisit and confirm an empirical relation between adsorption on gold and the cohesive energy.

16.
J Chem Phys ; 150(15): 154122, 2019 Apr 21.
Article in English | MEDLINE | ID: mdl-31005066

ABSTRACT

The so-called D4 model is presented for the accurate computation of London dispersion interactions in density functional theory approximations (DFT-D4) and generally for atomistic modeling methods. In this successor to the DFT-D3 model, the atomic coordination-dependent dipole polarizabilities are scaled based on atomic partial charges which can be taken from various sources. For this purpose, a new charge-dependent parameter-economic scaling function is designed. Classical charges are obtained from an atomic electronegativity equilibration procedure for which efficient analytical derivatives with respect to nuclear positions are developed. A numerical Casimir-Polder integration of the atom-in-molecule dynamic polarizabilities then yields charge- and geometry-dependent dipole-dipole dispersion coefficients. Similar to the D3 model, the dynamic polarizabilities are precomputed by time-dependent DFT and all elements up to radon (Z = 86) are covered. The two-body dispersion energy expression has the usual sum-over-atom-pairs form and includes dipole-dipole as well as dipole-quadrupole interactions. For a benchmark set of 1225 molecular dipole-dipole dispersion coefficients, the D4 model achieves an unprecedented accuracy with a mean relative deviation of 3.8% compared to 4.7% for D3. In addition to the two-body part, three-body effects are described by an Axilrod-Teller-Muto term. A common many-body dispersion expansion was extensively tested, and an energy correction based on D4 polarizabilities is found to be advantageous for larger systems. Becke-Johnson-type damping parameters for DFT-D4 are determined for more than 60 common density functionals. For various standard energy benchmark sets, DFT-D4 slightly but consistently outperforms DFT-D3. Especially for metal containing systems, the introduced charge dependence of the dispersion coefficients improves thermochemical properties. We suggest (DFT-)D4 as a physically improved and more sophisticated dispersion model in place of DFT-D3 for DFT calculations as well as other low-cost approaches like semi-empirical models.

17.
J Chem Theory Comput ; 15(3): 1652-1671, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30741547

ABSTRACT

An extended semiempirical tight-binding model is presented, which is primarily designed for the fast calculation of structures and noncovalent interaction energies for molecular systems with roughly 1000 atoms. The essential novelty in this so-called GFN2-xTB method is the inclusion of anisotropic second order density fluctuation effects via short-range damped interactions of cumulative atomic multipole moments. Without noticeable increase in the computational demands, this results in a less empirical and overall more physically sound method, which does not require any classical halogen or hydrogen bonding corrections and which relies solely on global and element-specific parameters (available up to radon, Z = 86). Moreover, the atomic partial charge dependent D4 London dispersion model is incorporated self-consistently, which can be naturally obtained in a tight-binding picture from second order density fluctuations. Fully analytical and numerically precise gradients (nuclear forces) are implemented. The accuracy of the method is benchmarked for a wide variety of systems and compared with other semiempirical methods. Along with excellent performance for the "target" properties, we also find lower errors for "off-target" properties such as barrier heights and molecular dipole moments. High computational efficiency along with the improved physics compared to its precursor GFN-xTB makes this method well-suited to explore the conformational space of molecular systems. Significant improvements are furthermore observed for various benchmark sets, which are prototypical for biomolecular systems in aqueous solution.

18.
Angew Chem Int Ed Engl ; 58(3): 882-886, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30452100

ABSTRACT

A new six-membered cyclic frustrated phosphane/borane Lewis pair was liberated from its HB(C6 F5 )2 adduct by treatment with vinylcyclohexane. The system is an active frustrated Lewis pair that undergoes cycloaddition reactions with suitable π reagents and it splits dihydrogen. At room temperature in solution the new compound is a monomer, however, in the crystal and in solution at low temperature it aggregates to a thermodynamically favoured supramolecular macrocyclic cyclooctamer.

19.
Acc Chem Res ; 52(1): 258-266, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30586286

ABSTRACT

Quantum chemical methods are nowadays able to determine properties of larger chemical systems with high accuracy and Kohn-Sham density functional theory (DFT) in particular has proven to be robust and suitable for everyday applications of electronic structure theory. A clear disadvantage of many established standard density functional approximations like B3LYP is their inability to describe long-range electron correlation effects. The inclusion of such effects, also termed London dispersion, into DFT has been extensively researched in recent years, resulting in some efficient and routinely used correction schemes. The well-established D3 method has demonstrated its efficiency and accuracy in numerous applications since 2010. Recently, it was improved by developing the successor (termed D4) which additionally includes atomic partial charge information for the generation of pairwise dispersion coefficients. These coefficients determine the leading-order (two-body) and higher-order (three- or many-body) terms of the D4 dispersion energy which is simply added to a standard DFT energy. With its excellent accuracy-to-cost ratio, the DFT-D4 method is well suited for the determination of structures and chemical properties for molecules of most kinds. While dispersion effects in organic molecules are nowadays well studied, much less is known for organometallic complexes. For such systems, there has been a growing interest in designing dispersion-controlled reactions especially in the field of homogeneous catalysis. Here, efficient electronic structure methods are necessary for screening of promising model complexes and quantifying dispersion effects. In this Account, we describe the quality of calculated structural and thermodynamic properties in gas-phase obtained with DFT-D4 corrected methods, specifically for organometallic complexes. The physical effects leading to London dispersion interactions are briefly discussed in the picture of second-order perturbation theory. Subsequently, basic theoretical aspects of the D4 method are introduced followed by selected case studies. Several chemical examples are presented starting with the analysis of transition metal thermochemistry and noncovalent interactions for small, heavy element containing main group compounds. Computed reaction energies can only match highly accurate reference values when all energy contributions are included in the DFT treatment, thus highlighting the major role of dispersion interactions for the accurate description of thermochemistry in gas-phase. Furthermore, the correlation between structural and catalytic properties is emphasized where the accessibility of high quality structures is essential for reaction planning and catalyst design. We present calculations for aggregates of organometallic systems with intrinsically large repulsive electrostatic interactions which can be stabilized by London dispersion effects. The newly introduced inclusion of atomic charge information in the DFT-D4 model robustly leads to quantitatively improved dispersion energies in particular for metallic systems. By construction it yields results which are easily understandable due to a clear separation into hybridization and charge (oxidation) state and two- and many-body effects, respectively. Due to its high computational efficiency, the D4 dispersion model is even applicable to low-cost classical and semiempirical theoretical methods.

SELECTION OF CITATIONS
SEARCH DETAIL