Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 66: 101643, 2022 12.
Article in English | MEDLINE | ID: mdl-36400401

ABSTRACT

OBJECTIVE: Skeletal muscle is a pivotal organ for the coordination of systemic metabolism, constituting one of the largest storage site for glucose, lipids and amino acids. Tight temporal orchestration of protein breakdown in times of fasting has to be balanced with preservation of muscle mass and function. However, the molecular mechanisms that control the fasting response in muscle are poorly understood. METHODS: We now have identified a role for the peroxisome proliferator-activated receptor γ coactivator 1ß (PGC-1ß) in the regulation of catabolic pathways in this context in muscle-specific loss-of-function mouse models. RESULTS: Muscle-specific knockouts for PGC-1ß experience mitigated muscle atrophy in fasting, linked to reduced expression of myostatin, atrogenes, activation of AMP-dependent protein kinase (AMPK) and other energy deprivation signaling pathways. At least in part, the muscle fasting response is modulated by a negative effect of PGC-1ß on the nuclear factor of activated T-cells 1 (NFATC1). CONCLUSIONS: Collectively, these data highlight the complex regulation of muscle metabolism and reveal a new role for muscle PGC-1ß in the control of proteostasis in fasting.


Subject(s)
Muscle, Skeletal , Transcription Factors , Animals , Mice , Fasting/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Myofibrils/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
2.
EMBO J ; 38(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30910878

ABSTRACT

Asymmetric localization of mRNA is important for cell fate decisions in eukaryotes and provides the means for localized protein synthesis in a variety of cell types. Here, we show that hexose transporter mRNAs are retained in the mother cell of S. cerevisiae until metaphase-anaphase transition (MAT) and then are released into the bud. The retained mRNA was translationally less active but bound to ribosomes before MAT Importantly, when cells were shifted from starvation to glucose-rich conditions, HXT2 mRNA, but none of the other HXT mRNAs, was enriched in the bud after MAT This enrichment was dependent on the Ras/cAMP/PKA pathway, the APC ortholog Kar9, and nuclear segregation into the bud. Competition experiments between strains that only expressed one hexose transporter at a time revealed that HXT2 only cells grow faster than their counterparts when released from starvation. Therefore, asymmetric distribution of HXT2 mRNA provides a growth advantage for daughters, who are better prepared for nutritional changes in the environment. Our data provide evidence that asymmetric mRNA localization is an important factor in determining cellular fitness.


Subject(s)
Glucose Transport Proteins, Facilitative , RNA, Messenger/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Carbohydrate Metabolism/genetics , Glucose/metabolism , Glucose Transport Proteins, Facilitative/genetics , Glucose Transport Proteins, Facilitative/metabolism , Metabolic Networks and Pathways/genetics , Optical Imaging , Organisms, Genetically Modified , Saccharomyces cerevisiae Proteins/metabolism , Single-Cell Analysis/methods , Tissue Distribution
3.
Sci Rep ; 9(1): 1165, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718583

ABSTRACT

Confocal microscopy is used today on a daily basis in life science labs. This "routine" technique contributes to the progress of scientific projects across many fields by revealing structural details and molecular localization, but researchers need to be aware that detection efficiency and emission light path performance is of major influence in the confocal image quality. By design, a large portion of the signal is discarded in confocal imaging, leading to a decreased signal-to-noise ratio (SNR) which in turn limits resolution. A well-aligned system and high performance detectors are needed in order to generate an image of best quality. However, a convenient method to address system status and performance on the emission side is still lacking. Here, we present a complete method to assess microscope and emission light path performance in terms of SNR, with a comprehensive protocol alongside NoiSee, an easy-to-use macro for Fiji (available via the corresponding update site). We used this method to compare several confocal systems in our facility on biological samples under typical imaging conditions. Our method reveals differences in microscope performance and highlights the various detector types used (multialkali photomultiplier tube (PMT), gallium arsenide phosphide (GaAsP) PMT, and Hybrid detector). Altogether, our method will provide useful information to research groups and facilities to diagnose their confocal microscopes.

4.
Nat Microbiol ; 2: 16268, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28112722

ABSTRACT

Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 µm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.


Subject(s)
Hydrogen Peroxide/metabolism , Neutrophils/enzymology , Peroxidase/metabolism , Phagosomes/microbiology , Respiratory Burst , Salmonella/metabolism , Animals , Computer Simulation , Humans , Hypochlorous Acid/metabolism , Kinetics , Mice , Neutrophils/immunology , Oxidation-Reduction , Oxidative Stress , Phagosomes/metabolism , Reactive Oxygen Species/metabolism , Salmonella/pathogenicity
5.
Cell Rep ; 9(2): 504-13, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25373898

ABSTRACT

Organ morphogenesis requires the coordination of cell behaviors. Here, we have analyzed dynamic endothelial cell behaviors underlying sprouting angiogenesis in vivo. Two different mechanisms contribute to sprout outgrowth: tip cells show strong migratory behavior, whereas extension of the stalk is dependent upon cell elongation. To investigate the function of Cdh5 in sprout outgrowth, we generated null mutations in the zebrafish cdh5 gene, and we found that junctional remodeling and cell elongation are impaired in mutant embryos. The defects are associated with a disorganization of the actin cytoskeleton and cannot be rescued by expression of a truncated version of Cdh5. Finally, the defects in junctional remodeling can be phenocopied by pharmacological inhibition of actin polymerization, but not by inhibiting actin-myosin contractility. Taken together, our results support a model in which Cdh5 organizes junctional and cortical actin cytoskeletons, as well as provides structural support for polymerizing F-actin cables during endothelial cell elongation.


Subject(s)
Actins/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Endothelial Cells/metabolism , Neovascularization, Physiologic , Zebrafish/metabolism , Actin Cytoskeleton/metabolism , Animals , Antigens, CD/genetics , Cadherins/genetics , Cell Movement , Endothelial Cells/cytology , Endothelial Cells/physiology , Endothelium, Vascular/embryology , Endothelium, Vascular/metabolism , Intercellular Junctions/metabolism , Myosins/metabolism , Polymerization , Zebrafish/embryology , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...