Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Mol Psychiatry ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622200

ABSTRACT

Severe psychiatric illnesses, for instance schizophrenia, and affective diseases or autism spectrum disorders, have been associated with cognitive impairment and perturbed excitatory-inhibitory balance in the brain. Effects in juvenile mice can elucidate how erythropoietin (EPO) might aid in rectifying hippocampal transcriptional networks and synaptic structures of pyramidal lineages, conceivably explaining mitigation of neuropsychiatric diseases. An imminent conundrum is how EPO restores synapses by involving interneurons. By analyzing ~12,000 single-nuclei transcriptomic data, we generated a comprehensive molecular atlas of hippocampal interneurons, resolved into 15 interneuron subtypes. Next, we studied molecular alterations upon recombinant human (rh)EPO and saw that gene expression changes relate to synaptic structure, trans-synaptic signaling and intracellular catabolic pathways. Putative ligand-receptor interactions between pyramidal and inhibitory neurons, regulating synaptogenesis, are altered upon rhEPO. An array of in/ex vivo experiments confirms that specific interneuronal populations exhibit reduced dendritic complexity, synaptic connectivity, and changes in plasticity-related molecules. Metabolism and inhibitory potential of interneuron subgroups are compromised, leading to greater excitability of pyramidal neurons. To conclude, improvement by rhEPO of neuropsychiatric phenotypes may partly owe to restrictive control over interneurons, facilitating re-connectivity and synapse development.

2.
J Psychopharmacol ; 38(4): 362-374, 2024 04.
Article in English | MEDLINE | ID: mdl-38519416

ABSTRACT

BACKGROUND: Persistent cognitive impairment is frequent across bipolar disorder (BD) and major depressive disorder (MDD), highlighting an urgent need for pro-cognitive treatments. AIM: This study investigated effects of erythropoietin (EPO) on cognitive impairment and dorsal prefrontal cortex (dPFC) activity in affective disorders. METHODS: In this randomized, double-blinded, placebo-controlled trial, cognitively impaired patients with remitted BD or MDD received 1 weekly recombinant human EPO (40,000 IU/mL) or saline infusion for a 12-week period. Assessments were conducted at baseline, after 2 weeks of treatment (week 3), immediately after treatment (week 13) and at 6-months follow-up. Participants underwent functional MRI during performance on a n-back working memory (WM) task at baseline and week 3, and for a subgroup 6 weeks post-treatment (week 18). The primary outcome was a cognitive composite score at week 13, whereas secondary outcomes comprised sustained attention and functioning. WM-related dPFC activity was a tertiary outcome. RESULTS: Data were analysed for 101 of the 103 included patients (EPO, n = 58; saline, n = 43). There were no effects of EPO over saline on any cognitive or functional outcomes or on WM-related dPFC activity. CONCLUSIONS: The absence of treatment-related changes in cognition and neural activity was unexpected and contrasts with multiple previous preclinical and clinical studies. It is possible that the lack of effects resulted from a recent change in the manufacturing process for EPO. Nevertheless, the findings support the validity of dPFC target engagement as a biomarker model for pro-cognitive effects, according to which treatments that do not improve cognition should not modulate dPFC activity. TRIAL REGISTRATIONS: EudraCT no.: 2016-004023-24; ClinicalTrials.gov identifier: NCT03315897.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Erythropoietin , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/psychology , Mood Disorders/drug therapy , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Cognitive Dysfunction/drug therapy , Cognition , Prefrontal Cortex , Treatment Outcome , Double-Blind Method
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339038

ABSTRACT

Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/pathology , alpha-Synuclein , Parkinsonian Disorders/pathology , Dopaminergic Neurons/pathology , Hypoxia/pathology , Oxygen
4.
Eur Neuropsychopharmacol ; 79: 38-48, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128460

ABSTRACT

Electroconvulsive therapy (ECT) is one of the most effective and rapid-acting treatment for severe depression but is associated with cognitive side-effects. Identification of add-on treatments that counteract these side-effects would be very helpful. This randomized, double-blinded, placebo-controlled, parallel-group study investigated the effects of four add-on erythropoietin (EPO; 40,000 IU/ml) or saline (placebo) infusions over 2.5 weeks of ECT (eight ECT sessions) in severely depressed patients with unipolar or bipolar depression. Neuropsychological assessments were conducted pre-ECT, three days after the eighth ECT (week 4), and at a 3-month follow-up. Further, functional magnetic resonance imaging (fMRI) was conducted after the eighth ECT. The primary outcome was change from pre- to post-ECT in a 'speed of complex cognitive processing' composite. Secondary outcomes were verbal and autobiographical memory. Of sixty randomized patients, one dropped out before baseline. Data were thus analysed for 59 patients (EPO, n = 33; saline, n = 26), of whom 28 had fMRI data. No ECT-related decline occurred in the primary global cognition measure (ps≥0.1), and no effect of EPO versus saline was observed on this outcome (ps≥0.3). However post-ECT, EPO-treated patients exhibited faster autobiographical memory recall than saline-treated patients (p = 0.02), which was accompanied by lower memory-related parietal cortex activity. The absence of global cognition changes with ECT and EPO, coupled with the specific impact of EPO on autobiographical memory recall speed and memory-related parietal cortex activity, suggests that assessing autobiographical memory may provide increased sensitivity in evaluating and potentially preventing cognitive side-effects of ECT. TRIAL REGISTRATIONS: ClinicalTrials.gov: NCT03339596, EudraCT no.: 2016-002326-36.


Subject(s)
Electroconvulsive Therapy , Erythropoietin , Humans , Electroconvulsive Therapy/adverse effects , Electroconvulsive Therapy/methods , Depression , Treatment Outcome , Erythropoietin/therapeutic use , Erythropoietin/pharmacology , Epoetin Alfa , Cognition , Double-Blind Method
5.
Brain Sci ; 13(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38137096

ABSTRACT

Emerging evidence highlights moderate hypoxia as a candidate treatment for brain disorders. This systematic review examines findings and the methodological quality of studies investigating hypoxia (10-16% O2) for ≥14 days in humans, as well as the neurobiological mechanisms triggered by hypoxia in animals, and suggests optimal treatment protocols to guide future studies. We followed the preferred reporting items for systematic reviews and meta-analysis (PRISMA) 2020. Searches were performed on PubMed/MEDLINE, PsycInfo, EMBASE, and the Cochrane Library, in May-September 2023. Two authors independently reviewed the human studies with the following tools: (1) revised Cochrane collaboration's risk of bias for randomized trials 2.0; (2) the risk of bias in nonrandomized studies of interventions. We identified 58 eligible studies (k = 8 human studies with N = 274 individuals; k = 48 animal studies) reporting the effects of hypoxia on cognition, motor function, neuroimaging, neuronal/synaptic morphology, inflammation, oxidative stress, erythropoietin, neurotrophins, and Alzheimer's disease markers. A total of 75% of human studies indicated cognitive and/or neurological benefits, although all studies were evaluated ashigh risk of bias due to a lack of randomization and assessor blinding. Low-dose intermittent or continuous hypoxia repeated for 30-240 min sessions, preferably in combination with motor-cognitive training, produced beneficial effects, and high-dose hypoxia with longer (≥6 h) durations and chronic exposure produced more adverse effects. Larger and methodologically stronger translational studies are warranted.

6.
J Physiol ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37860950

ABSTRACT

Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.

7.
J Neurochem ; 167(2): 296-317, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37753846

ABSTRACT

Mutations in PARK15, which encodes for the F-box protein FBXO7 have been associated with Parkinsonian Pyramidal syndrome, a rare and complex movement disorder with Parkinsonian symptoms, pyramidal tract signs and juvenile onset. Our previous study showed that systemic loss of Fbxo7 in mice causes motor defects and premature death. We have also demonstrated that FBXO7 has a crucial role in neurons as the specific deletion in tyrosine hydroxylase-positive or glutamatergic forebrain neurons leads to late-onset or early-onset motor dysfunction, respectively. In this study, we examined NEX-Cre;Fbxo7fl/fl mice, in which Fbxo7 was specifically deleted in glutamatergic projection neurons. The effects of FBXO7 deficiency on striatal integrity were investigated with HPLC and histological analyses. NEX-Cre;Fbxo7fl/fl mice revealed an increase in striatal dopamine concentrations, changes in the glutamatergic, GABAergic and dopaminergic pathways, astrogliosis and microgliosis and little or no neuronal loss in the striatum. To determine the effects on the integrity of the synapse, we purified synaptic membranes, subjected them to quantitative mass spectrometry analysis and found alterations in the complement system, endocytosis and exocytosis pathways. These neuropathological changes coincide with alterations in spontaneous home cage behavior. Taken together, our findings suggest that FBXO7 is crucial for corticostriatal projections and the synaptic integrity of the striatum, and consequently for proper motor control.

8.
Neuroprotection ; 1(1): 9-19, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37671067

ABSTRACT

Hypoxia is increasingly recognized as an important physiological driving force. A specific transcriptional program, induced by a decrease in oxygen (O2) availability, for example, inspiratory hypoxia at high altitude, allows cells to adapt to lower O2 and limited energy metabolism. This transcriptional program is partly controlled by and partly independent of hypoxia-inducible factors. Remarkably, this same transcriptional program is stimulated in the brain by extensive motor-cognitive exercise, leading to a relative decrease in O2 supply, compared to the acutely augmented O2 requirement. We have coined the term "functional hypoxia" for this important demand-responsive, relative reduction in O2 availability. Functional hypoxia seems to be critical for enduring adaptation to higher physiological challenge that includes substantial "brain hardware upgrade," underlying advanced performance. Hypoxia-induced erythropoietin expression in the brain likely plays a decisive role in these processes, which can be imitated by recombinant human erythropoietin treatment. This article review presents hints of how inspiratory O2 manipulations can potentially contribute to enhanced brain function. It thereby provides the ground for exploiting moderate inspiratory plus functional hypoxia to treat individuals with brain disease. Finally, it sketches a planned multistep pilot study in healthy volunteers and first patients, about to start, aiming at improved performance upon motor-cognitive training under inspiratory hypoxia.

9.
Nat Commun ; 14(1): 4777, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604818

ABSTRACT

Recombinant human erythropoietin (rhEPO) has potent procognitive effects, likely hematopoiesis-independent, but underlying mechanisms and physiological role of brain-expressed EPO remained obscure. Here, we provide transcriptional hippocampal profiling of male mice treated with rhEPO. Based on ~108,000 single nuclei, we unmask multiple pyramidal lineages with their comprehensive molecular signatures. By temporal profiling and gene regulatory analysis, we build developmental trajectory of CA1 pyramidal neurons derived from multiple predecessor lineages and elucidate gene regulatory networks underlying their fate determination. With EPO as 'tool', we discover populations of newly differentiating pyramidal neurons, overpopulating to ~200% upon rhEPO with upregulation of genes crucial for neurodifferentiation, dendrite growth, synaptogenesis, memory formation, and cognition. Using a Cre-based approach to visually distinguish pre-existing from newly formed pyramidal neurons for patch-clamp recordings, we learn that rhEPO treatment differentially affects excitatory and inhibitory inputs. Our findings provide mechanistic insight into how EPO modulates neuronal functions and networks.


Subject(s)
Erythropoietin , Gene Regulatory Networks , Humans , Male , Animals , Mice , Erythropoietin/genetics , Erythropoietin/pharmacology , Cognition , Learning , Solitary Nucleus
10.
J Am Heart Assoc ; 12(15): e029843, 2023 08.
Article in English | MEDLINE | ID: mdl-37489722

ABSTRACT

Background A substantial proportion of ischemic strokes remain cryptogenic, which has important implications for secondary prevention. Identifying genetic variants related to mechanisms of stroke causes may provide a chance to clarify the actual causes of cryptogenic strokes. Methods and Results In a 2-step process, 2 investigators independently and systematically screened studies that reported genetic variants in regard to stroke causes that were published between January 1991 and April 2021. Studies on monogenetic disorders, investigation of vascular risk factors as the primary end point, reviews, meta-analyses, and studies not written in English were excluded. We extracted information on study types, ancestries, corresponding single nucleotide polymorphisms, and sample and effect sizes. There were 937 studies screened, and 233 were eligible. We identified 35 single nucleotide polymorphisms and allele variants that were associated with an overlap between cryptogenic strokes and another defined cause. Conclusions Associations of single variants with an overlap between cryptogenic stroke and another defined cause were limited to a few polymorphisms. A limitation of all studies is a low granularity of clinical data, which is of major importance in a complex disease such as stroke. Deep phenotyping is in supposed contradiction with large sample sizes but needed for genome-wide analyses. Future studies should attempt to address this restriction to advance the promising approach of elucidating the cause of stroke at the genetic level. Especially in a highly heterogenous disease such as ischemic stroke, genetics are promising to establish a personalized approach in diagnostics and treatment in the sense of precision medicine.


Subject(s)
Ischemic Stroke , Stroke , Humans , Genome-Wide Association Study , Stroke/diagnosis , Stroke/genetics , Ischemic Stroke/complications , Risk Factors , Causality
11.
Nature ; 618(7964): 349-357, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258678

ABSTRACT

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Myelin Sheath , Plaque, Amyloid , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Myelin Sheath/metabolism , Myelin Sheath/pathology , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Axons/metabolism , Axons/pathology , Microglia/metabolism , Microglia/pathology , Single-Cell Gene Expression Analysis , Risk Factors , Disease Progression
12.
Elife ; 122023 03 09.
Article in English | MEDLINE | ID: mdl-36892455

ABSTRACT

A key feature of advanced brain aging includes structural defects of intracortical myelin that are associated with secondary neuroinflammation. A similar pathology is seen in specific myelin mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. However, the cognitive assessment of these mutants is problematic because myelin-dependent motor-sensory functions are required for quantitative behavioral readouts. To better understand the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, encoding the major integral myelin membrane protein, selectively in ventricular zone stem cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects were restricted to the cortex, hippocampus, and underlying callosal tracts. Moreover, forebrain-specific Plp1 mutants exhibited no defects of basic motor-sensory performance at any age tested. Surprisingly, several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were absent and even social interactions appeared normal. However, with novel behavioral paradigms, we determined catatonia-like symptoms and isolated executive dysfunction in both genders. This suggests that loss of myelin integrity has an impact on cortical connectivity and underlies specific defects of executive function. These observations are likewise relevant for human neuropsychiatric conditions and other myelin-related diseases.


Subject(s)
Catatonia , Myelin Sheath , Mice , Animals , Female , Humans , Male , Myelin Sheath/metabolism , Catatonia/metabolism , Catatonia/pathology , Brain/pathology , Mice, Knockout , Corpus Callosum , Oligodendroglia
13.
Brain Behav Immun ; 108: 135-147, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36323361

ABSTRACT

BACKGROUND: Circulating autoantibodies (AB) against brain-antigens, often deemed pathological, receive increasing attention. We assessed predispositions and seroprevalence/characteristics of 49 AB in > 7000 individuals. METHODS: Exploratory cross-sectional cohort study, investigating deeply phenotyped neuropsychiatric patients and healthy individuals of GRAS Data Collection for presence/characteristics of 49 brain-directed serum-AB. Predispositions were evaluated through GWAS of NMDAR1-AB carriers, analyses of immune check-point genotypes, APOE4 status, neurotrauma. Chi-square, Fisher's exact tests and logistic regression analyses were used. RESULTS: Study of N = 7025 subjects (55.8 % male; 41 ±â€¯16 years) revealed N = 1133 (16.13 %) carriers of any AB against 49 defined brain-antigens. Overall, age dependence of seroprevalence (OR = 1.018/year; 95 % CI [1.015-1.022]) emerged, but no disease association, neither general nor with neuropsychiatric subgroups. Males had higher AB seroprevalence (OR = 1.303; 95 % CI [1.144-1.486]). Immunoglobulin class (N for IgM:462; IgA:487; IgG:477) and titers were similar. Abundant were NMDAR1-AB (7.7 %). Low seroprevalence (1.25 %-0.02 %) was seen for most AB (e.g., amphiphysin, KCNA2, ARHGAP26, GFAP, CASPR2, MOG, Homer-3, KCNA1, GLRA1b, GAD65). Non-detectable were others. GWAS of NMDAR1-AB carriers revealed three genome-wide significant SNPs, two intergenic, one in TENM3, previously autoimmune disease-associated. Targeted analysis of immune check-point genotypes (CTLA4, PD1, PD-L1) uncovered effects on humoral anti-brain autoimmunity (OR = 1.55; 95 % CI [1.058-2.271]) and disease likelihood (OR = 1.43; 95 % CI [1.032-1.985]). APOE4 carriers (∼19 %) had lower seropositivity (OR = 0.766; 95 % CI [0.625-0.933]). Neurotrauma predisposed to NMDAR1-AB seroprevalence (IgM: OR = 1.599; 95 % CI [1.022-2.468]). CONCLUSIONS: Humoral autoimmunity against brain-antigens, frequent across health and disease, is predicted by age, gender, genetic predisposition, and brain injury. Seroprevalence, immunoglobulin class, or titers do not predict disease.


Subject(s)
Autoantibodies , Autoimmunity , Female , Humans , Male , Apolipoprotein E4 , Cross-Sectional Studies , Immunoglobulin Isotypes , Immunoglobulin M , Membrane Proteins , Nerve Tissue Proteins , Seroepidemiologic Studies , Adult , Middle Aged
15.
Brain Behav Immun Health ; 24: 100494, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35965838

ABSTRACT

Anesthetics penetrate the blood-brain-barrier (BBB) and - as confirmed preclinically - transiently disrupt it. An analogous consequence in humans has remained unproven. In mice, we previously reported that upon BBB dysfunction, the brain acts as 'immunoprecipitator' of autoantibodies against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB). We thus hypothesized that during human anesthesia, pre-existing NMDAR1-AB will specifically bind to brain. Screening of N = 270 subjects undergoing general anesthesia during cardiac surgery for serum NMDAR1-AB revealed N = 25 NMDAR1-AB seropositives. Only N = 14 remained positive post-surgery. No changes in albumin, thyroglobulin or CRP were associated with reduction of serum NMDAR1-AB. Thus, upon anesthesia, BBB opening likely occurs also in humans.

18.
Mol Psychiatry ; 27(5): 2372-2379, 2022 05.
Article in English | MEDLINE | ID: mdl-35414656

ABSTRACT

PREFACE: Executive functions, learning, attention, and processing speed are imperative facets of cognitive performance, affected in neuropsychiatric disorders. In clinical studies on different patient groups, recombinant human (rh) erythropoietin (EPO) lastingly improved higher cognition and reduced brain matter loss. Correspondingly, rhEPO treatment of young rodents or EPO receptor (EPOR) overexpression in pyramidal neurons caused remarkable and enduring cognitive improvement, together with enhanced hippocampal long-term potentiation. The 'brain hardware upgrade', underlying these observations, includes an EPO induced ~20% increase in pyramidal neurons and oligodendrocytes in cornu ammonis hippocampi in the absence of elevated DNA synthesis. In parallel, EPO reduces microglia numbers and dampens their activity and metabolism as prerequisites for undisturbed EPO-driven differentiation of pre-existing local neuronal precursors. These processes depend on neuronal and microglial EPOR. This novel mechanism of powerful postnatal neurogenesis, outside the classical neurogenic niches, and on-demand delivery of new cells, paralleled by dendritic spine increase, let us hypothesize a physiological procognitive role of hypoxia-induced endogenous EPO in brain, which we imitate by rhEPO treatment. Here we delineate the brain EPO circle as working model explaining adaptive 'brain hardware upgrade' and improved performance. In this fundamental regulatory circle, neuronal networks, challenged by motor-cognitive tasks, drift into transient 'functional hypoxia', thereby triggering neuronal EPO/EPOR expression.


Subject(s)
Erythropoietin , Brain/metabolism , Erythropoietin/metabolism , Humans , Hypoxia/metabolism , Neurogenesis , Pyramidal Cells/metabolism , Recombinant Proteins/metabolism
19.
Nat Commun ; 13(1): 1163, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246535

ABSTRACT

Myelin, the electrically insulating sheath on axons, undergoes dynamic changes over time. However, it is composed of proteins with long lifetimes. This raises the question how such a stable structure is renewed. Here, we study the integrity of myelinated tracts after experimentally preventing the formation of new myelin in the CNS of adult mice, using an inducible Mbp null allele. Oligodendrocytes survive recombination, continue to express myelin genes, but they fail to maintain compacted myelin sheaths. Using 3D electron microscopy and mass spectrometry imaging we visualize myelin-like membranes failing to incorporate adaxonally, most prominently at juxta-paranodes. Myelinoid body formation indicates degradation of existing myelin at the abaxonal side and the inner tongue of the sheath. Thinning of compact myelin and shortening of internodes result in the loss of about 50% of myelin and axonal pathology within 20 weeks post recombination. In summary, our data suggest that functional axon-myelin units require the continuous incorporation of new myelin membranes.


Subject(s)
Myelin Sheath , White Matter , Animals , Axons/metabolism , Mice , Myelin Sheath/metabolism , Oligodendroglia
20.
Biol Psychiatry ; 91(1): 102-117, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34099189

ABSTRACT

BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.


Subject(s)
Bipolar Disorder/genetics , Depressive Disorder, Major , Psychotic Disorders , Schizophrenia/genetics , Sex Characteristics , Depressive Disorder, Major/genetics , Endothelial Cells , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Psychotic Disorders/genetics , Receptors, Vascular Endothelial Growth Factor , Sulfurtransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...