Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172101

ABSTRACT

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Subject(s)
Body Fluids , COVID-19 , Female , Humans , SARS-CoV-2 , COVID-19/complications , B-Lymphocytes , Disease Progression , Phenotype
2.
medRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106077

ABSTRACT

Background: Understanding the kinetics and longevity of antibody responses to SARS-CoV-2 is critical to informing strategies toward reducing Coronavirus disease 2019 (COVID-19) reinfections, and improving vaccination and therapy approaches. Methods: We evaluated antibody titers against SARS-CoV-2 nucleocapsid (N), spike (S), and receptor binding domain (RBD) of spike in 98 convalescent participants who experienced asymptomatic, mild, moderate or severe COVID-19 disease and in 17 non-vaccinated, non-infected controls, using four different antibody assays. Participants were sampled longitudinally at 1, 3, 6, and 12 months post-SARS-CoV-2 positive PCR test. Findings: Increasing acute COVID-19 disease severity correlated with higher anti-N and anti-RBD antibody titers throughout 12 months post-infection. Anti-N and anti-RBD titers declined over time in all participants, with the exception of increased anti-RBD titers post-vaccination, and the decay rates were faster in hospitalized compared to non-hospitalized participants. <50% of participants retained anti-N titers above control levels at 12 months, with non-hospitalized participants falling below control levels sooner. Nearly all hospitalized and non-hospitalized participants maintained anti-RBD titers above controls for up to 12 months, suggesting longevity of protection against severe reinfections. Nonetheless, by 6 months, few participants retained >50% of their 1-month anti-N or anti-RBD titers. Vaccine-induced increases in anti-RBD titers were greater in non-hospitalized relative to hospitalized participants. Early convalescent antibody titers correlated with age, but no association was observed between Post-Acute Sequelae of SARS-CoV-2 infection (PASC) status or acute steroid treatment and convalescent antibody titers. Interpretation: Hospitalized participants developed higher anti-SARS-CoV-2 antibody titers relative to non-hospitalized participants, a difference that persisted throughout 12 months, despite the faster decline in titers in hospitalized participants. In both groups, while anti-N titers fell below control levels for at least half of the participants, anti-RBD titers remained above control levels for almost all participants over 12 months, demonstrating generation of long-lived antibody responses known to correlate with protection from severe disease across COVID-19 severities. Overall, our findings contribute to the evolving understanding of COVID-19 antibody dynamics. Funding: Austin Public Health, NIAAA, Babson Diagnostics, Dell Medical School Startup.

3.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986828

ABSTRACT

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.

5.
Nat Commun ; 14(1): 6270, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805579

ABSTRACT

We previously found that T-cell acute lymphoblastic leukemia (T-ALL) requires support from tumor-associated myeloid cells, which activate Insulin Like Growth Factor 1 Receptor (IGF1R) signaling in leukemic blasts. However, IGF1 is not sufficient to sustain T-ALL in vitro, implicating additional myeloid-mediated signals in leukemia progression. Here, we find that T-ALL cells require close contact with myeloid cells to survive. Transcriptional profiling and in vitro assays demonstrate that integrin-mediated cell adhesion activates downstream focal adhesion kinase (FAK)/ proline-rich tyrosine kinase 2 (PYK2), which are required for myeloid-mediated T-ALL support, partly through activation of IGF1R. Blocking integrin ligands or inhibiting FAK/PYK2 signaling diminishes leukemia burden in multiple organs and confers a survival advantage in a mouse model of T-ALL. Inhibiting integrin-mediated adhesion or FAK/PYK2 also reduces survival of primary patient T-ALL cells co-cultured with myeloid cells. Furthermore, elevated integrin pathway gene signatures correlate with higher FAK signaling and myeloid gene signatures and are associated with an inferior prognosis in pediatric T-ALL patients. Together, these findings demonstrate that integrin activation and downstream FAK/PYK2 signaling are important mechanisms underlying myeloid-mediated support of T-ALL progression.


Subject(s)
Focal Adhesion Kinase 2 , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Mice , Animals , Humans , Child , Focal Adhesion Kinase 2/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction/genetics , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Integrins/metabolism , T-Lymphocytes/metabolism , Phosphorylation
6.
Elife ; 122023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266571

ABSTRACT

Central tolerance ensures autoreactive T cells are eliminated or diverted to the regulatory T cell lineage, thus preventing autoimmunity. To undergo central tolerance, thymocytes must enter the medulla to test their T-cell receptors (TCRs) for autoreactivity against the diverse self-antigens displayed by antigen-presenting cells (APCs). While CCR7 is known to promote thymocyte medullary entry and negative selection, our previous studies implicate CCR4 in these processes, raising the question of whether CCR4 and CCR7 play distinct or redundant roles in central tolerance. Here, synchronized positive selection assays, two-photon time-lapse microscopy, and quantification of TCR-signaled apoptotic thymocytes, demonstrate that CCR4 and CCR7 promote medullary accumulation and central tolerance of distinct post-positive selection thymocyte subsets in mice. CCR4 is upregulated within hours of positive selection signaling and promotes medullary entry and clonal deletion of immature post-positive selection thymocytes. In contrast, CCR7 is expressed several days later and is required for medullary localization and negative selection of mature thymocytes. In addition, CCR4 and CCR7 differentially enforce self-tolerance, with CCR4 enforcing tolerance to self-antigens presented by activated APCs, which express CCR4 ligands. Our findings show that CCR7 expression is not synonymous with medullary localization and support a revised model of central tolerance in which CCR4 and CCR7 promote early and late stages of negative selection, respectively, via interactions with distinct APC subsets.


Autoimmune diseases occur when immune cells mistakenly identify the body's own tissues as 'foreign' and attack them. To reduce the risk of this happening, the body has multiple ways of removing self-reactive immune cells, including T cells. One such way, known as central tolerance, occurs in the thymus ­ the organ where T cells develop. In the center of the thymus ­ the medulla ­ specialized cells display fragments of the majority of proteins expressed by healthy cells throughout the body. Developing T cells enter the medulla, where they scan these specialized cells to determine if they recognize the presented protein fragments. If an immature T cell recognizes and binds to these 'self-antigens' too strongly, it is either destroyed, or it develops into a regulatory cell, capable of actively suppressing T cell responses to that self-antigen. This ensures that T cells won't attack healthy cells in the body that make those self-antigens, and therefore, it is important that T cells enter the medulla and carry out this scanning process efficiently. T cells are recruited to the medulla from the outer region of the thymus by chemical signals called chemokines. These signals are recognized by chemokine receptors on T cells, which are expressed at different times during T cell development. Previous work has shown that one of these receptors, called CCR7, guides T cells to the medulla. Although it was thought that CCR7 was solely responsible for this migration, prior work suggests another receptor, CCR4, may also contribute to T cell migration into the medulla and central tolerance. To determine whether CCR7 and CCR4 play the same or different roles in central tolerance, Li, Tipan et al. used a combination of experimental methods, including live imaging of the thymus, to study T cell development in mice. The experiments revealed that CCR4 is expressed first, and this receptor alone guides immature T cells into the medulla and ensures that they are the first to be checked for self-reactivity. In contrast, CCR7 is expressed by more mature developing T cells two to three days later, ensuring they also accumulate within the medulla and become tolerant to self-antigens. Both receptors are required for protection from autoimmunity, with results suggesting that CCR4 and CCR7 promote tolerance against different tissues. Taken together, the findings provide new information about the distinct requirement for CCR4 and CCR7 in guiding immature T cells into the medulla and ensuring central tolerance to diverse tissues. One outstanding question is whether defects in T cells entering the medulla earlier or later alter tolerance to distinct self-antigens and lead to different autoimmune diseases. Future work will also investigate whether these observations hold true in humans, potentially leading to therapies for autoimmune diseases.


Subject(s)
Thymocytes , Thymus Gland , Animals , Mice , Autoantigens/metabolism , Cell Differentiation , Central Tolerance , Receptors, Antigen, T-Cell/metabolism , Receptors, CCR7/metabolism , Thymocytes/metabolism , Thymus Gland/metabolism
7.
Aging Cell ; 22(8): e13870, 2023 08.
Article in English | MEDLINE | ID: mdl-37221658

ABSTRACT

Age-related thymus involution results in decreased T-cell production, contributing to increased susceptibility to pathogens and reduced vaccine responsiveness. Elucidating mechanisms underlying thymus involution will inform strategies to restore thymopoiesis with age. The thymus is colonized by circulating bone marrow (BM)-derived thymus seeding progenitors (TSPs) that differentiate into early T-cell progenitors (ETPs). We find that ETP cellularity declines as early as 3 months (3MO) of age in mice. This initial ETP reduction could reflect changes in thymic stromal niches and/or pre-thymic progenitors. Using a multicongenic progenitor transfer approach, we demonstrate that the number of functional TSP/ETP niches does not diminish with age. Instead, the number of pre-thymic lymphoid progenitors in the BM and blood is substantially reduced by 3MO, although their intrinsic ability to seed and differentiate in the thymus is maintained. Additionally, Notch signaling in BM lymphoid progenitors and in ETPs diminishes by 3MO, suggesting reduced niche quality in the BM and thymus contribute to the early decline in ETPs. Together, these findings indicate that diminished BM lymphopoiesis and thymic stromal support contribute to an initial reduction in ETPs in young adulthood, setting the stage for progressive age-associated thymus involution.


Subject(s)
Bone Marrow , T-Lymphocytes , Mice , Animals , Thymus Gland , Signal Transduction , Mice, Inbred C57BL , Cell Differentiation
8.
Mult Scler Relat Disord ; 68: 104195, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223705

ABSTRACT

BACKGROUND AND OBJECTIVES: During the COVID-19 pandemic, B cell depleting therapies pose a clinical concern for patients with neuroimmune conditions, as patients may not mount a sufficient immune response to SARS-CoV-2 infection and vaccinations. Studies to-date have reported conflicting results on the degree of antibody production post-SARS-CoV-2 infection and vaccinations in B cell depleted patients, focusing primarily on short-term immune profiling. Our objective was to follow longitudinal immune responses in COVID-19 B cell depleted patients with neuroimmune disorders post-COVID-19 and SARS-CoV-2-vaccination. METHODS: CD20 B cell depleted autoimmune patients and age/sex-matched controls positive for SARS-CoV-2 were recruited at Dell Medical School, UT Austin between 2020 and 2021, followed prospectively for 12 months and evaluated at multiple time points for spike S1 receptor binding domain (RBD) antibody titers, B and T cell composition, and frequency of T cells specific for SARS-CoV-2 antigens. RESULTS: Immune responses post-SARS-CoV-2 infection and vaccination were evaluated in a cohort of COVID-19 B cell depleted neuroimmune patients (n = 5), COVID-19 non-B cell depleted autoimmune patients (n = 15), COVID-19 immunocompetent patients (n = 117), and healthy controls (n = 6) for a total of 259 samples in 137 participants. 4/5 B cell-depleted patients developed detectable anti-spike RBD antibodies, which were boosted by vaccination in 2 patients. While spike RBD antibodies were associated with presence of CD20+ B cells, very few B cells were required. In contrast, patients whose B cell compartment primarily consisted of CD19+CD20- Bcells during acute COVID-19 disease or vaccination did not seroconvert. Interestingly, circulating Bcells in B cell depleted patients were significantly CD38high with co-expression of CD24 and CD27, indicating that B cell depletion may impact B cell activation patterns. Additionally, all B cell depleted patients mounted a sustained T cell response to SARS-CoV-2 antigens, regardless of seroconversion. Specifically, all patients developed naïve, central memory, effector memory, and effector memory RA+ T cells, suggesting intact T cell memory conversion in B cell depleted patients compared to controls. DISCUSSION: We present the longest COVID-19 immune profiling analysis to date in B cell depleted patients, demonstrating that both humoral and cellular immune responses can be generated and sustained up to 12 months post SARS-CoV-2 infection and vaccination. Notably, failure to establish humoral immunity did not result in severe disease. We also highlight specific T and B cell signatures that could be used as clinical biomarkers to advise patients on timing of SARS-CoV-2 vaccinations.


Subject(s)
COVID-19 , Humans , Infant , SARS-CoV-2 , Pandemics , Autoimmunity , Patients , Vaccination , Antibodies, Viral
9.
EBioMedicine ; 83: 104208, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35952496

ABSTRACT

BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.


Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin , Post-Acute COVID-19 Syndrome
10.
Aging Cell ; 21(6): e13624, 2022 06.
Article in English | MEDLINE | ID: mdl-35561351

ABSTRACT

One of the earliest hallmarks of immune aging is thymus involution, which not only reduces the number of newly generated and exported T cells, but also alters the composition and organization of the thymus microenvironment. Thymic T-cell export continues into adulthood, yet the impact of thymus involution on the quality of newly generated T-cell clones is not well established. Notably, the number and proportion of medullary thymic epithelial cells (mTECs) and expression of tissue-restricted antigens (TRAs) decline with age, suggesting the involuting thymus may not promote efficient central tolerance. Here, we demonstrate that the middle-aged thymic environment does not support rapid motility of medullary thymocytes, potentially diminishing their ability to scan antigen presenting cells (APCs) that display the diverse self-antigens that induce central tolerance. Consistent with this possibility, thymic slice assays reveal that the middle-aged thymic environment does not support efficient negative selection or regulatory T-cell (Treg) induction of thymocytes responsive to either TRAs or ubiquitous self-antigens. This decline in central tolerance is not universal, but instead impacts lower-avidity self-antigens that are either less abundant or bind to TCRs with moderate affinities. Additionally, the decline in thymic tolerance by middle age is accompanied by both a reduction in mTECs and hematopoietic APC subsets that cooperate to drive central tolerance. Thus, age-associated changes in the thymic environment result in impaired central tolerance against moderate-avidity self-antigens, potentially resulting in export of increasingly autoreactive naive T cells, with a deficit of Treg counterparts by middle age.


Subject(s)
Antigen-Presenting Cells , Central Tolerance , Antigen-Presenting Cells/metabolism , Autoantigens/metabolism , Epithelial Cells/metabolism , T-Lymphocytes, Regulatory , Thymocytes , Thymus Gland
11.
Front Immunol ; 12: 676236, 2021.
Article in English | MEDLINE | ID: mdl-33968086

ABSTRACT

Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.


Subject(s)
Aging/immunology , Central Tolerance , Thymus Gland/immunology , Age Factors , Antigen-Presenting Cells/immunology , Epithelial Cells/immunology , Humans , T-Lymphocytes, Regulatory/immunology
12.
Addict Biol ; 26(2): e12889, 2021 03.
Article in English | MEDLINE | ID: mdl-32176824

ABSTRACT

Alcohol abuse induces changes in microglia morphology and immune function, but whether microglia initiate or simply amplify the harmful effects of alcohol exposure is still a matter of debate. Here, we determine microglia function in acute and voluntary drinking behaviors using a colony-stimulating factor 1 receptor inhibitor (PLX5622). We show that microglia depletion does not alter the sedative or hypnotic effects of acute intoxication. Microglia depletion also does not change the escalation or maintenance of chronic voluntary alcohol consumption. Transcriptomic analysis revealed that although many immune genes have been implicated in alcohol abuse, downregulation of microglia genes does not necessitate changes in alcohol intake. Instead, microglia depletion and chronic alcohol result in compensatory upregulation of alcohol-responsive, reactive astrocyte genes, indicating astrocytes may play a role in regulation of these alcohol behaviors. Taken together, our behavioral and transcriptional data indicate that microglia are not the primary effector cell responsible for regulation of acute and voluntary alcohol behaviors. Because microglia depletion did not regulate acute or voluntary alcohol behaviors, we hypothesized that these doses were insufficient to activate microglia and recruit them to an effector phenotype. Therefore, we used a model of repeated immune activation using polyinosinic:polycytidylic acid (poly(I:C)) to activate microglia. Microglia depletion blocked poly(I:C)-induced escalations in alcohol intake, indicating microglia regulate drinking behaviors with sufficient immune activation. By testing the functional role of microglia in alcohol behaviors, we provide insight into when microglia are causal and when they are consequential for the transition from alcohol use to dependence.


Subject(s)
Alcoholism/pathology , Microglia/drug effects , Organic Chemicals/pharmacology , Alcohol Drinking/pathology , Alcoholic Intoxication/pathology , Animals , Astrocytes/drug effects , Chronic Disease , Dose-Response Relationship, Drug , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Motor Skills/drug effects , Receptors, Colony-Stimulating Factor/antagonists & inhibitors , Signal Transduction/drug effects , Sleep/drug effects
13.
Cancer Discov ; 11(3): 614-625, 2021 03.
Article in English | MEDLINE | ID: mdl-33257470

ABSTRACT

Immune checkpoint inhibitors (ICI) targeting CTLA4 or PD-1/PD-L1 have transformed cancer therapy but are associated with immune-related adverse events, including myocarditis. Here, we report a robust preclinical mouse model of ICI-associated myocarditis in which monoallelic loss of Ctla4 in the context of complete genetic absence of Pdcd1 leads to premature death in approximately half of mice. Premature death results from myocardial infiltration by T cells and macrophages and severe ECG abnormalities, closely recapitulating the clinical and pathologic hallmarks of ICI-associated myocarditis observed in patients. Using this model, we show that Ctla4 and Pdcd1 functionally interact in a gene dosage-dependent manner, providing a mechanism by which myocarditis arises with increased frequency in the setting of combination ICI therapy. We demonstrate that intervention with CTLA4-Ig (abatacept) is sufficient to ameliorate disease progression and additionally provide a case series of patients in which abatacept mitigates the fulminant course of ICI myocarditis. SIGNIFICANCE: We provide a preclinical model of ICI-associated myocarditis which recapitulates this clinical syndrome. Using this model, we demonstrate that CTLA4 and PD-1 (ICI targets) functionally interact for myocarditis development and that intervention with CTLA4-Ig (abatacept) attenuates myocarditis, providing mechanistic rationale and preclinical support for therapeutic clinical studies.See related commentary by Young and Bluestone, p. 537.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Molecular Targeted Therapy/adverse effects , Myocarditis/diagnosis , Myocarditis/etiology , Neoplasms/complications , Animals , Biomarkers, Tumor/antagonists & inhibitors , Cardiotoxicity , Disease Management , Disease Models, Animal , Disease Susceptibility , Electrocardiography , Humans , Immune Checkpoint Inhibitors/therapeutic use , Mice , Myocarditis/metabolism , Neoplasms/drug therapy , Neoplasms/etiology
14.
Blood ; 136(16): 1837-1850, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32845007

ABSTRACT

Despite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo. Consistent with this possibility, in vivo depletion of myeloid cells results in a significant reduction in leukemia burden in multiple organs in 2 distinct mouse models of T-ALL and prolongs survival. The impact of the myeloid compartment on T-ALL growth is not dependent on suppression of antitumor T-cell responses. Instead, myeloid cells provide signals that directly support T-ALL cells. Transcriptional profiling, functional assays, and acute in vivo myeloid-depletion experiments identify activation of IGF1R as a critical component of myeloid-mediated T-ALL growth and survival. We identify several myeloid subsets that have the capacity to directly support survival of T-ALL cells. Consistent with mouse models, myeloid cells derived from human peripheral blood monocytes activate IGF1R and directly support survival of primary patient T-ALL cells in vitro. Furthermore, enriched macrophage gene signatures in published clinical samples correlate with inferior outcomes for pediatric T-ALL patients. Collectively, these data reveal that tumor-associated myeloid cells provide signals critical for T-ALL growth in multiple organs in vivo and implicate tumor-associated myeloid cells and associated signals as potential therapeutic targets.


Subject(s)
Cell Communication , Myeloid Cells/immunology , Myeloid Cells/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Tumor Microenvironment , Biomarkers , Cell Line, Tumor , Gene Expression Profiling , Humans , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Myeloid Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction
15.
Sci Rep ; 8(1): 14335, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30254371

ABSTRACT

Thymic epithelial cells (TEC) are essential for thymocyte differentiation and repertoire selection. Despite their indispensable role in generating functional T cells, the molecular mechanisms that orchestrate TEC development from endodermal progenitors in the third pharyngeal pouch (3rd PP) are not fully understood. We recently reported that the T-box transcription factor TBX1 negatively regulates TEC development. Although initially expressed throughout the 3rd PP, Tbx1 becomes downregulated in thymus-fated progenitors and when ectopically expressed impairs TEC progenitor proliferation and differentiation. Here we show that ectopic Tbx1 expression in thymus fated endoderm increases expression of Polycomb repressive complex 2 (PRC2) target genes in TEC. PRC2 is an epigenetic modifier that represses gene expression by catalyzing trimethylation of lysine 27 on histone H3. The increased expression of PRC2 target genes suggests that ectopic Tbx1 interferes with PRC2 activity and implicates PRC2 as an important regulator of TEC development. To test this hypothesis, we used Foxn1Cre to delete Eed, a PRC2 component required for complex stability and function in thymus fated 3rd PP endoderm. Proliferation and differentiation of fetal and newborn TEC were disrupted in the conditional knockout (EedCKO) mutants leading to severely dysplastic adult thymi. Consistent with PRC2-mediated transcriptional silencing, the majority of differentially expressed genes (DEG) were upregulated in EedCKO TEC. Moreover, a high frequency of EedCKO DEG overlapped with DEG in TEC that ectopically expressed Tbx1. These findings demonstrate that PRC2 plays a critical role in TEC development and suggest that Tbx1 expression must be downregulated in thymus fated 3rd PP endoderm to ensure optimal PRC2 function.


Subject(s)
Epithelial Cells/cytology , Polycomb Repressive Complex 2/metabolism , Thymus Gland/cytology , Animals , Cell Differentiation , Cell Lineage , Gene Deletion , Gene Expression Regulation , Histones/metabolism , Methylation , Mice , Polycomb Repressive Complex 2/deficiency , Polycomb Repressive Complex 2/genetics , T-Box Domain Proteins/genetics
16.
PLoS One ; 13(7): e0200765, 2018.
Article in English | MEDLINE | ID: mdl-30024927

ABSTRACT

Following positive selection, thymocytes migrate into the medulla where they encounter diverse self-antigens that induce central tolerance. Thymocytes expressing T cell receptors (TCRs) with high affinity for self-antigens displayed by medullary antigen presenting cells (APCs) undergo either negative selection or diversion to the regulatory T cell (Treg) lineage, thus ensuring maturation of non-autoreactive T cells. Because many self-antigens are expressed by only a small percentage of medullary thymic epithelial cells, thymocytes must enter the medulla and efficiently scan APCs therein to encounter the full array of self-antigens that induce central tolerance. Chemokine receptors play a critical role in promoting medullary entry and rapid motility of post-positive selection thymocytes. We found that the chemokine receptor CCR8 is expressed by post-positive selection CD4+ single positive (SP) thymocytes in mice, while the corresponding chemokine ligands are expressed by medullary APCs, and thus hypothesized that CCR8 would promote thymocyte medullary entry and/or rapid motility to induce negative selection. However, despite a subtle decline in thymocyte medullary accumulation and the presence of autoantibodies in aged CCR8-deficient mice, CCR8 was not required for thymocyte differentiation, rapid motility, or negative selection.


Subject(s)
CD4 Antigens/metabolism , Receptors, CCR8/metabolism , Thymocytes/metabolism , Animals , Antigen-Presenting Cells/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Inbred C57BL , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Receptors, CCR8/genetics
17.
Nat Biotechnol ; 36(8): 758-764, 2018 09.
Article in English | MEDLINE | ID: mdl-30010674

ABSTRACT

Increased tryptophan (Trp) catabolism in the tumor microenvironment (TME) can mediate immune suppression by upregulation of interferon (IFN)-γ-inducible indoleamine 2,3-dioxygenase (IDO1) and/or ectopic expression of the predominantly liver-restricted enzyme tryptophan 2,3-dioxygenase (TDO). Whether these effects are due to Trp depletion in the TME or mediated by the accumulation of the IDO1 and/or TDO (hereafter referred to as IDO1/TDO) product kynurenine (Kyn) remains controversial. Here we show that administration of a pharmacologically optimized enzyme (PEGylated kynureninase; hereafter referred to as PEG-KYNase) that degrades Kyn into immunologically inert, nontoxic and readily cleared metabolites inhibits tumor growth. Enzyme treatment was associated with a marked increase in the tumor infiltration and proliferation of polyfunctional CD8+ lymphocytes. We show that PEG-KYNase administration had substantial therapeutic effects when combined with approved checkpoint inhibitors or with a cancer vaccine for the treatment of large B16-F10 melanoma, 4T1 breast carcinoma or CT26 colon carcinoma tumors. PEG-KYNase mediated prolonged depletion of Kyn in the TME and reversed the modulatory effects of IDO1/TDO upregulation in the TME.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Hydrolases/therapeutic use , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Neoplasms/drug therapy , Animals , Cancer Vaccines/therapeutic use , Cell Line, Tumor , Humans , Neoplasms/enzymology , Neoplasms/immunology , Neoplasms/metabolism , Tumor Microenvironment
18.
J Appl Stat ; 45(4): 697-713, 2018.
Article in English | MEDLINE | ID: mdl-29403142

ABSTRACT

The detection of T cell activation is critical in many immunological assays. However, detecting T cell activation in live tissues remains a challenge due to highly noisy data. We developed a Bayesian probabilistic model to identify T cell activation based on calcium flux, a dramatic increase in intracellular calcium concentration that occurs during T cell activation. Because a T cell has unknown number of flux events, the implementation of posterior inference requires trans-dimensional posterior simulation. The model is able to detect calcium flux events at the single cell level from simulated data, as well as from noisy biological data.

19.
Trends Immunol ; 39(2): 86-98, 2018 02.
Article in English | MEDLINE | ID: mdl-29162323

ABSTRACT

As they differentiate, thymocytes encounter spatially restricted cues critical for differentiation and selection of a functional, self-tolerant T cell repertoire. Sequential migration of developing T cells through distinct thymic microenvironments is enforced by the ordered expression of chemokine receptors. Herein, we provide an updated perspective on T cell differentiation through the lens of recent advances that illuminate the dynamics of chemokine-driven thymocyte migration, localization, and interactions with stromal cells. We consider these findings in the context of earlier groundwork exploring the contribution of chemokines to T cell development, recent advances regarding the specificity of chemokine signaling, and novel techniques for evaluating the T cell repertoire. We suggest future research should amalgamate visualization of localized cellular interactions with downstream molecular signals.


Subject(s)
Chemokines/metabolism , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/physiology , Thymocytes/physiology , Thymus Gland/immunology , Animals , Cell Communication , Cell Differentiation , Cell Movement , Clonal Selection, Antigen-Mediated , Humans , Immune Tolerance
20.
Cell Rep ; 21(1): 168-180, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28978470

ABSTRACT

Upon recognition of auto-antigens, thymocytes are negatively selected or diverted to a regulatory T cell (Treg) fate. CCR7 is required for negative selection of auto-reactive thymocytes in the thymic medulla. Here, we describe an unanticipated contribution of CCR7 to intrathymic Treg generation. Ccr7-/- mice have increased Treg cellularity because of a hematopoietic but non-T cell autonomous CCR7 function. CCR7 expression by thymic dendritic cells (DCs) promotes survival of mature Sirpα- DCs. Thus, CCR7 deficiency results in apoptosis of Sirpα- DCs, which is counterbalanced by expansion of immature Sirpα+ DCs that efficiently induce Treg generation. CCR7 deficiency results in enhanced intrathymic generation of Tregs at the neonatal stage and in lymphopenic adults, when Treg differentiation is critical for establishing self-tolerance. Together, these results reveal a complex function for CCR7 in thymic tolerance induction, where CCR7 not only promotes negative selection but also governs intrathymic Treg generation via non-thymocyte intrinsic mechanisms.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance , Receptors, CCR7/genetics , T-Lymphocytes, Regulatory/immunology , Thymocytes/immunology , Thymus Gland/immunology , Animals , Apoptosis/immunology , Bone Marrow Transplantation , Cell Differentiation , Cell Survival/immunology , Dendritic Cells/cytology , Gene Expression Regulation , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR7/deficiency , Receptors, CCR7/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Signal Transduction , T-Lymphocytes, Regulatory/cytology , Thymocytes/cytology , Thymus Gland/cytology , Transplantation Chimera , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...