Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Epigenomes ; 8(1)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38390894

ABSTRACT

While studying myoblast methylomes and transcriptomes, we found that CDH15 had a remarkable preference for expression in both myoblasts and cerebellum. To understand how widespread such a relationship was and its epigenetic and biological correlates, we systematically looked for genes with similar transcription profiles and analyzed their DNA methylation and chromatin state and accessibility profiles in many different cell populations. Twenty genes were expressed preferentially in myoblasts and cerebellum (Myob/Cbl genes). Some shared DNA hypo- or hypermethylated regions in myoblasts and cerebellum. Particularly striking was ZNF556, whose promoter is hypomethylated in expressing cells but highly methylated in the many cell populations that do not express the gene. In reporter gene assays, we demonstrated that its promoter's activity is methylation sensitive. The atypical epigenetics of ZNF556 may have originated from its promoter's hypomethylation and selective activation in sperm progenitors and oocytes. Five of the Myob/Cbl genes (KCNJ12, ST8SIA5, ZIC1, VAX2, and EN2) have much higher RNA levels in cerebellum than in myoblasts and displayed myoblast-specific hypermethylation upstream and/or downstream of their promoters that may downmodulate expression. Differential DNA methylation was associated with alternative promoter usage for Myob/Cbl genes MCF2L, DOK7, CNPY1, and ANK1. Myob/Cbl genes PAX3, LBX1, ZNF556, ZIC1, EN2, and VAX2 encode sequence-specific transcription factors, which likely help drive the myoblast and cerebellum specificity of other Myob/Cbl genes. This study extends our understanding of epigenetic/transcription associations related to differentiation and may help elucidate relationships between epigenetic signatures and muscular dystrophies or cerebellar-linked neuropathologies.

2.
Epigenomes ; 6(4)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36547252

ABSTRACT

TBX15, which encodes a differentiation-related transcription factor, displays promoter-adjacent DNA hypermethylation in myoblasts and skeletal muscle (psoas) that is absent from non-expressing cells in other lineages. By whole-genome bisulfite sequencing (WGBS) and enzymatic methyl-seq (EM-seq), these hypermethylated regions were found to border both sides of a constitutively unmethylated promoter. To understand the functionality of this DNA hypermethylation, we cloned the differentially methylated sequences (DMRs) in CpG-free reporter vectors and tested them for promoter or enhancer activity upon transient transfection. These cloned regions exhibited strong promoter activity and, when placed upstream of a weak promoter, strong enhancer activity specifically in myoblast host cells. In vitro CpG methylation targeted to the DMR sequences in the plasmids resulted in 86−100% loss of promoter or enhancer activity, depending on the insert sequence. These results as well as chromatin epigenetic and transcription profiles for this gene in various cell types support the hypothesis that DNA hypermethylation immediately upstream and downstream of the unmethylated promoter region suppresses enhancer/extended promoter activity, thereby downmodulating, but not silencing, expression in myoblasts and certain kinds of skeletal muscle. This promoter-border hypermethylation was not found in cell types with a silent TBX15 gene, and these cells, instead, exhibit repressive chromatin in and around the promoter. TBX18, TBX2, TBX3 and TBX1 display TBX15-like hypermethylated DMRs at their promoter borders and preferential expression in myoblasts. Therefore, promoter-adjacent DNA hypermethylation for downmodulating transcription to prevent overexpression may be used more frequently for transcription regulation than currently appreciated.

3.
Epigenomics ; 14(6): 351-358, 2022 03.
Article in English | MEDLINE | ID: mdl-35255735

ABSTRACT

Melanie Ehrlich, PhD, is a professor in the Tulane Cancer Center, the Tulane Center for Medical Bioinformatics and Genomics and the Hayward Human Genetics Program at Tulane Medical School, New Orleans, LA. She obtained her PhD in molecular biology in 1971 from the State University of New York at Stony Brook and completed postdoctoral research at Albert Einstein College of Medicine in 1972. She has been working on various aspects of epigenetics, starting with DNA methylation, since 1973. Her group made many first findings about DNA methylation (see below). For example, in 1982 and 1983, in collaboration with Charles Gehrke at the University of Missouri, she was the first to report tissue-specific and cancer-specific differences in overall DNA methylation in humans. In 1985, Xian-Yang Zhang and Richard Wang in her lab discovered a class of human DNA sequences specifically hypomethylated in sperm. In 1998, her group was the first to describe extensive losses of DNA methylation in pericentromeric and centromeric DNA repeats in human cancer. Her lab's many publications on the prevalence of both DNA hypermethylation and hypomethylation in the same cancers brought needed balance to our understanding of the epigenetics of cancer and to its clinical implications [1]. Besides working on cancer epigenetics, her research group has helped elucidate cytogenetic and gene expression abnormalities in the immunodeficiency, centromeric and facial anomalies (ICF) syndrome, a rare recessive disease often caused by mutations in DNMT3B. Her group also studied the epigenetics and transcriptomics of facioscapulohumeral muscular dystrophy (FSHD), whose disease locus is a tandem 3.3-kb repeat at subtelomeric 4q (that happens to be hypomethylated in ICF DNA [2]). Her study of FSHD has taken her in the direction of muscle (skeletal muscle, heart and aorta) epigenetics [3-6]. Recently, she has led research that applies epigenetics much more rigorously than usual to the evaluation of genetic variants from genome-wide association studies (GWAS) of osteoporosis and obesity. In continued collaboration with Sriharsa Pradhan at New England Biolabs and Michelle Lacey at Tulane University, she has compared 5-hydroxymethylcytosine and 5-methylcytosine clustering in various human tissues [7] and is studying myoblast methylomes that they generated by a new high-resolution enzymatic technique (enzymatic methyl-seq).


Subject(s)
Epigenomics , Muscular Dystrophy, Facioscapulohumeral , DNA/metabolism , DNA Methylation , Female , Genome-Wide Association Study , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Reward
4.
Int J Mol Sci ; 23(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35163195

ABSTRACT

Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.


Subject(s)
Computational Biology/methods , Genome-Wide Association Study/methods , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Chromatin/genetics , Epigenesis, Genetic/genetics , Epigenomics/methods , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Humans , Linkage Disequilibrium/genetics , Obesity/metabolism , Quantitative Trait Loci/genetics , Transcription Factors/metabolism , Transcriptome/genetics
5.
JBMR Plus ; 5(5): e10481, 2021 May.
Article in English | MEDLINE | ID: mdl-33977200

ABSTRACT

Genetic risk factors for osteoporosis, a prevalent disease associated with aging, have been examined in many genome-wide association studies (GWASs). A major challenge is to prioritize transcription-regulatory GWAS-derived variants that are likely to be functional. Given the critical role of epigenetics in gene regulation, we have used an unusual epigenetics-based and transcription-based approach to identify some of the credible regulatory single-nucleotide polymorphisms (SNPs) relevant to osteoporosis from 38 reported bone mineral density (BMD) GWASs. Using Roadmap databases, we prioritized SNPs based upon their overlap with strong enhancer or promoter chromatin preferentially in osteoblasts relative to 12 heterologous cell culture types. We also required that these SNPs overlap open chromatin (Deoxyribonuclease I [DNaseI]-hypersensitive sites) and DNA sequences predicted to bind to osteoblast-relevant transcription factors in an allele-specific manner. From >50,000 GWAS-derived SNPs, we identified 14 novel and credible regulatory SNPs (Tier-1 SNPs) for osteoporosis risk. Their associated genes, BICC1, LGR4, DAAM2, NPR3, or HMGA2, are involved in osteoblastogenesis or bone homeostasis and regulate cell signaling or enhancer function. Four of these genes are preferentially expressed in osteoblasts. BICC1, LGR4, and DAAM2 play important roles in canonical Wnt signaling, a pathway critical for bone formation and repair. The transcription factors predicted to bind to the Tier-1 SNP-containing DNA sequences also have bone-related functions. We present evidence that some of the Tier-1 SNPs exert their effects on BMD risk indirectly through little-studied long noncoding RNA (lncRNA) genes, which may, in turn, control the nearby bone-related protein-encoding gene. Our study illustrates a method to identify novel BMD-related causal regulatory SNPs for future study and to prioritize candidate regulatory GWAS-derived SNPs, in general. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Epigenomics ; 13(3): 219-234, 2021 02.
Article in English | MEDLINE | ID: mdl-33538177

ABSTRACT

Aims: Excessive inflammatory signaling and pathological remodeling of the extracellular matrix drive cardiac fibrosis and require changes in gene expression. Materials and methods: Using bioinformatics, both tissue-specific expression profiles and epigenomic profiles of some genes critical for cardiac fibrosis were examined, namely, NLRP3, MMP2, MMP9, CCN2/CTGF, AGT (encodes angiotensin II precursors) and hsa-mir-223 (post-transcriptionally regulates NLRP3). Results: In monocytes, neutrophils, fibroblasts, venous cells, liver and brain, enhancers or super-enhancers were found that correlate with high expression of these genes. One enhancer extended into a silent gene neighbor. These enhancers harbored tissue-specific foci of DNA hypomethylation, open chromatin and transcription factor binding. Conclusions: This study identified previously undescribed enhancers containing hypomethylated transcription factor binding subregions that are predicted to regulate expression of these cardiac fibrosis-inducing genes.


Subject(s)
Enhancer Elements, Genetic , Epigenesis, Genetic , Myocardium/pathology , Aged , Aged, 80 and over , Angiotensin II/genetics , Angiotensin II/metabolism , Aorta/metabolism , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , DNA Methylation , Female , Fibrosis , Gene Expression , Humans , Liver/metabolism , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , MicroRNAs/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/metabolism
7.
Epigenomes ; 6(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35076500

ABSTRACT

Striated muscle has especially large energy demands. We identified 97 genes preferentially expressed in skeletal muscle and heart, but not in aorta, and found significant enrichment for mitochondrial associations among them. We compared the epigenomic and transcriptomic profiles of the 27 genes associated with striated muscle and mitochondria. Many showed strong correlations between their tissue-specific transcription levels, and their tissue-specific promoter, enhancer, or open chromatin as well as their DNA hypomethylation. Their striated muscle-specific enhancer chromatin was inside, upstream, or downstream of the gene, throughout much of the gene as a super-enhancer (CKMT2, SLC25A4, and ACO2), or even overlapping a neighboring gene (COX6A2, COX7A1, and COQ10A). Surprisingly, the 3' end of the 1.38 Mb PRKN (PARK2) gene (involved in mitophagy and linked to juvenile Parkinson's disease) displayed skeletal muscle/myoblast-specific enhancer chromatin, a myoblast-specific antisense RNA, as well as brain-specific enhancer chromatin. We also found novel tissue-specific RNAs in brain and embryonic stem cells within PPARGC1A (PGC-1α), which encodes a master transcriptional coregulator for mitochondrial formation and metabolism. The tissue specificity of this gene's four alternative promoters, including a muscle-associated promoter, correlated with nearby enhancer chromatin and open chromatin. Our in-depth epigenetic examination of these genes revealed previously undescribed tissue-specific enhancer chromatin, intragenic promoters, regions of DNA hypomethylation, and intragenic noncoding RNAs that give new insights into transcription control for this medically important set of genes.

8.
Int J Mol Sci ; 21(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182325

ABSTRACT

KLHL and the related KBTBD genes encode components of the Cullin-E3 ubiquitin ligase complex and typically target tissue-specific proteins for degradation, thereby affecting differentiation, homeostasis, metabolism, cell signaling, and the oxidative stress response. Despite their importance in cell function and disease (especially, KLHL40, KLHL41, KBTBD13, KEAP1, and ENC1), previous studies of epigenetic factors that affect transcription were predominantly limited to promoter DNA methylation. Using diverse tissue and cell culture whole-genome profiles, we examined 17 KLHL or KBTBD genes preferentially expressed in skeletal muscle or brain to identify tissue-specific enhancer and promoter chromatin, open chromatin (DNaseI hypersensitivity), and DNA hypomethylation. Sixteen of the 17 genes displayed muscle- or brain-specific enhancer chromatin in their gene bodies, and most exhibited specific intergenic enhancer chromatin as well. Seven genes were embedded in super-enhancers (particularly strong, tissue-specific clusters of enhancers). The enhancer chromatin regions typically displayed foci of DNA hypomethylation at peaks of open chromatin. In addition, we found evidence for an intragenic enhancer in one gene upregulating expression of its neighboring gene, specifically for KLHL40/HHATL and KLHL38/FBXO32 gene pairs. Many KLHL/KBTBD genes had tissue-specific promoter chromatin at their 5' ends, but surprisingly, two (KBTBD11 and KLHL31) had constitutively unmethylated promoter chromatin in their 3' exons that overlaps a retrotransposed KLHL gene. Our findings demonstrate the importance of expanding epigenetic analyses beyond the 5' ends of genes in studies of normal and abnormal gene regulation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Brain/metabolism , Epigenesis, Genetic/genetics , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Adult , Aged , Cells, Cultured , Child, Preschool , Chromatin/genetics , DNA Methylation/genetics , Enhancer Elements, Genetic/genetics , Epigenomics/methods , Exons/genetics , Female , Gene Expression Regulation/genetics , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Transcription, Genetic/genetics , Up-Regulation/genetics
9.
Epigenetics ; 15(6-7): 728-749, 2020.
Article in English | MEDLINE | ID: mdl-31975641

ABSTRACT

A major challenge in translating findings from genome-wide association studies (GWAS) to biological mechanisms is pinpointing functional variants because only a very small percentage of variants associated with a given trait actually impact the trait. We used an extensive epigenetics, transcriptomics, and genetics analysis of the TBX15/WARS2 neighbourhood to prioritize this region's best-candidate causal variants for the genetic risk of osteoporosis (estimated bone density, eBMD) and obesity (waist-hip ratio or waist circumference adjusted for body mass index). TBX15 encodes a transcription factor that is important in bone development and adipose biology. Manual curation of 692 GWAS-derived variants gave eight strong candidates for causal SNPs that modulate TBX15 transcription in subcutaneous adipose tissue (SAT) or osteoblasts, which highly and specifically express this gene. None of these SNPs were prioritized by Bayesian fine-mapping. The eight regulatory causal SNPs were in enhancer or promoter chromatin seen preferentially in SAT or osteoblasts at TBX15 intron-1 or upstream. They overlap strongly predicted, allele-specific transcription factor binding sites. Our analysis suggests that these SNPs act independently of two missense SNPs in TBX15. Remarkably, five of the regulatory SNPs were associated with eBMD and obesity and had the same trait-increasing allele for both. We found that WARS2 obesity-related SNPs can be ascribed to high linkage disequilibrium with TBX15 intron-1 SNPs. Our findings from GWAS index, proxy, and imputed SNPs suggest that a few SNPs, including three in a 0.7-kb cluster, act as causal regulatory variants to fine-tune TBX15 expression and, thereby, affect both obesity and osteoporosis risk.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Obesity/genetics , Osteoporosis/genetics , Polymorphism, Single Nucleotide , T-Box Domain Proteins/genetics , Adipocytes/metabolism , Female , Humans , Male , Middle Aged , Mutation, Missense , Osteoblasts/metabolism , Promoter Regions, Genetic , Transcriptome
10.
Epigenomes ; 4(1)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-34968235

ABSTRACT

Much remains to be discovered about the intersection of tissue-specific transcription control and the epigenetics of skeletal muscle (SkM), a very complex and dynamic organ. From four gene families, Leucine-Rich Repeat Containing (LRRC), Oxysterol Binding Protein Like (OSBPL), Ankyrin Repeat and Socs Box (ASB), and Transmembrane Protein (TMEM), we chose 21 genes that are preferentially expressed in human SkM relative to 52 other tissue types and analyzed relationships between their tissue-specific epigenetics and expression. We also compared their genetics, proteomics, and descriptions in the literature. For this study, we identified genes with little or no previous descriptions of SkM functionality (ASB4, ASB8, ASB10, ASB12, ASB16, LRRC14B, LRRC20, LRRC30, TMEM52, TMEM233, OSBPL6/ORP6, and OSBPL11/ORP11) and included genes whose SkM functions had been previously addressed (ASB2, ASB5, ASB11, ASB15, LRRC2, LRRC38, LRRC39, TMEM38A/TRIC-A, and TMEM38B/TRIC-B). Some of these genes have associations with SkM or heart disease, cancer, bone disease, or other diseases. Among the transcription-related SkM epigenetic features that we identified were: super-enhancers, promoter DNA hypomethylation, lengthening of constitutive low-methylated promoter regions, and SkM-related enhancers for one gene embedded in a neighboring gene (e.g., ASB8-PFKM, LRRC39-DBT, and LRRC14B-PLEKHG4B gene-pairs). In addition, highly or lowly co-expressed long non-coding RNA (lncRNA) genes probably regulate several of these genes. Our findings give insights into tissue-specific epigenetic patterns and functionality of related genes in a gene family and can elucidate normal and disease-related regulation of gene expression in SkM.

11.
Data Brief ; 23: 103812, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372457

ABSTRACT

Atherosclerosis involves phenotypic modulation and transdifferentiation of vascular smooth muscle cells (SMCs). Data are given in tabular or figure format that illustrate genome-wide DNA methylation alterations in atherosclerotic vs. control aorta (athero DMRs). Data based upon publicly available chromatin state profiles are also shown for normal aorta, monocyte, and skeletal muscle tissue-specific DMRs and for aorta-specific chromatin features (enhancer chromatin, promoter chromatin, repressed chromatin, actively transcribed chromatin). Athero hypomethylated and hypermethylated DMRs as well as epigenetic and transcription profiles are described for the following genes: ACTA2, MYH10, MYH11 (SMC-associated genes); SMAD3 (a signaling gene for SMCs and other cell types); CD79B and SH3BP2 (leukocyte-associated genes); and TBX20 and genes in the HOXA, HOXB, HOXC, and HOXD clusters (T-box and homeobox developmental genes). The data reveal strong correlations between athero hypermethylated DMRs and regions of enhancer chromatin in aorta, which are discussed in the linked research article "Atherosclerosis-associated differentially methylated regions can reflect the disease phenotype and are often at enhancers" (M. Lacey et al., 2019).

12.
Epigenetics ; 14(12): 1141-1163, 2019 12.
Article in English | MEDLINE | ID: mdl-31284823

ABSTRACT

Increasing numbers of studies implicate abnormal DNA methylation in cancer and many non-malignant diseases. This is consistent with numerous findings about differentiation-associated changes in DNA methylation at promoters, enhancers, gene bodies, and sites that control higher-order chromatin structure. Abnormal increases or decreases in DNA methylation contribute to or are markers for cancer formation and tumour progression. Aberrant DNA methylation is also associated with neurological diseases, immunological diseases, atherosclerosis, and osteoporosis. In this review, I discuss DNA hypermethylation in disease and its interrelationships with normal development as well as proposed mechanisms for the origin of and pathogenic consequences of disease-associated hypermethylation. Disease-linked DNA hypermethylation can help drive oncogenesis partly by its effects on cancer stem cells and by the CpG island methylator phenotype (CIMP); atherosclerosis by disease-related cell transdifferentiation; autoimmune and neurological diseases through abnormal perturbations of cell memory; and diverse age-associated diseases by age-related accumulation of epigenetic alterations.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Immune System Diseases/genetics , Neoplasms/genetics , Nervous System Diseases/genetics , Humans , Immune System Diseases/pathology , Neoplasms/pathology , Nervous System Diseases/pathology
13.
Epigenomics ; 11(2): 169-186, 2019 02.
Article in English | MEDLINE | ID: mdl-30688091

ABSTRACT

AIM: To understand tissue-specific regulation of angiopoietin/angiopoietin-like (ANGPT/ANGPTL) genes (especially the five genes embedded in introns of host genes) and their association with atherosclerosis. METHODS: Transcription and epigenomic databases from various normal tissues were examined in the vicinity of ANGPT1, ANGPT2, ANGPTL1, ANGPTL2, ANGPTL3, ANGPTL4 and ANGPTL8. RESULTS: We identified tissue-specific enhancer chromatin regions that are likely to regulate transcription of ANGPT/ANGPTL genes and were intragenic, intergenic or host gene-linked. In addition, we found atherosclerosis-linked differentially methylated regions associated with ANGPT2 and with sequences encoding miR-145, a microRNA that targets ANGPT2 mRNA in cancers. CONCLUSION: Our findings implicate enhancers as major contributors to tissue-specific expression of ANGPT/ANGPTL genes, which play critical roles in angiogenesis, atherosclerosis, cancer, and inflammatory and metabolic diseases.


Subject(s)
Angiopoietin-like Proteins/genetics , Angiopoietins/genetics , Atherosclerosis/genetics , Epigenesis, Genetic , Angiopoietin-like Proteins/metabolism , Angiopoietins/metabolism , Chromatin Assembly and Disassembly , DNA Methylation , Enhancer Elements, Genetic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Organ Specificity
14.
Atherosclerosis ; 280: 183-191, 2019 01.
Article in English | MEDLINE | ID: mdl-30529831

ABSTRACT

BACKGROUND AND AIMS: Atherosclerosis is a widespread and complicated disease involving phenotypic modulation and transdifferentiation of vascular smooth muscle cells (SMCs), the predominant cells in aorta, as well as changes in endothelial cells and infiltrating monocytes. Alterations in DNA methylation are likely to play central roles in these phenotypic changes, just as they do in normal differentiation and cancer. METHODS: We examined genome-wide DNA methylation changes in atherosclerotic aorta using more stringent criteria for differentially methylated regions (DMRs) than in previous studies and compared these DMRs to tissue-specific epigenetic features. RESULTS: We found that disease-linked hypermethylated DMRs account for 85% of the total atherosclerosis-associated DMRs and often overlap aorta-associated enhancer chromatin. These hypermethylated DMRs were associated with functionally different sets of genes compared to atherosclerosis-linked hypomethylated DMRs. The extent and nature of the DMRs could not be explained as direct effects of monocyte/macrophage infiltration. Among the known atherosclerosis- and contractile SMC-related genes that exhibited hypermethylated DMRs at aorta enhancer chromatin were ACTA2 (aorta α2 smooth muscle actin), ELN (elastin), MYOCD (myocardin), C9orf3 (miR-23b and miR-27b host gene), and MYH11 (smooth muscle myosin). Our analyses also suggest a role in atherosclerosis for developmental transcription factor genes having little or no previous association with atherosclerosis, such as NR2F2 (COUP-TFII) and TBX18. CONCLUSIONS: We provide evidence for atherosclerosis-linked DNA methylation changes in aorta SMCs that might help minimize or reverse the standard contractile character of many of these cells by down-modulating aorta SMC-related enhancers, thereby facilitating pro-atherosclerotic phenotypic changes in many SMCs.


Subject(s)
Aorta/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , DNA Methylation , Enhancer Elements, Genetic , Actins/genetics , Adult , Aged, 80 and over , Aminopeptidases/genetics , Aorta/metabolism , COUP Transcription Factor II/genetics , Cell Differentiation/genetics , Elastin/genetics , Endothelial Cells , Epigenesis, Genetic , Epigenomics , Female , Genome, Human , Genome-Wide Association Study , Humans , Male , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myosin Heavy Chains/genetics , Nuclear Proteins/genetics , Phenotype , T-Box Domain Proteins/genetics , Trans-Activators/genetics
15.
Viruses ; 10(5)2018 04 24.
Article in English | MEDLINE | ID: mdl-29695085

ABSTRACT

Bacteriophages SP-15 and ΦW-14 are members of the Myoviridae infecting Bacillus subtilis and Delftia (formerly Pseudomonas) acidovorans, respectively. What links them is that in both cases, approximately 50% of the thymine residues are replaced by hypermodified bases. The consequence of this is that the physico-chemical properties of the DNA are radically altered (melting temperature (Tm), buoyant density and susceptibility to restriction endonucleases). Using 454 pyrosequencing technology, we sequenced the genomes of both viruses. Phage ΦW-14 possesses a 157-kb genome (56.3% GC) specifying 236 proteins, while SP-15 is larger at 222 kb (38.6 mol % G + C) and encodes 318 proteins. In both cases, the phages can be considered genomic singletons since they do not possess BLASTn homologs. While no obvious genes were identified as being responsible for the modified base in ΦW-14, SP-15 contains a cluster of genes obviously involved in carbohydrate metabolism.


Subject(s)
Bacillus subtilis/virology , DNA, Viral/genetics , DNA, Viral/metabolism , Delftia acidovorans/virology , Myoviridae/genetics , Myoviridae/physiology , Base Composition , Base Sequence , Microbial Interactions , Multigene Family , Myoviridae/ultrastructure , Phylogeny , Thymine/analogs & derivatives , Viral Proteins
16.
Epigenetics ; 13(3): 275-289, 2018.
Article in English | MEDLINE | ID: mdl-29498561

ABSTRACT

DNA methylation can affect tissue-specific gene transcription in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). To elucidate the variety of associations between differentiation-related DNA hypermethylation and transcription, we used available epigenomic and transcriptomic profiles from 38 human cell/tissue types to focus on such relationships in 94 genes linked to hypermethylated DMRs in myoblasts (Mb). For 19 of the genes, promoter-region hypermethylation in Mb (and often a few heterologous cell types) was associated with gene repression but, importantly, DNA hypermethylation was absent in many other repressed samples. In another 24 genes, DNA hypermethylation overlapped cryptic enhancers or super-enhancers and correlated with down-modulated, but not silenced, gene expression. However, such methylation was absent, surprisingly, in both non-expressing samples and highly expressing samples. This suggests that some genes need DMR hypermethylation to help repress cryptic enhancer chromatin only when they are actively transcribed. For another 11 genes, we found an association between intergenic hypermethylated DMRs and positive expression of the gene in Mb. DNA hypermethylation/transcription correlations similar to those of Mb were evident sometimes in diverse tissues, such as aorta and brain. Our findings have implications for the possible involvement of methylated DNA in Duchenne's muscular dystrophy, congenital heart malformations, and cancer. This epigenomic analysis suggests that DNA methylation is not simply the inevitable consequence of changes in gene expression but, instead, is often an active agent for fine-tuning transcription in association with development.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic , Myoblasts/metabolism , Transcriptional Activation/genetics , Adult , Aged , Aged, 80 and over , Cell Differentiation/genetics , Child, Preschool , Chromatin/genetics , CpG Islands/genetics , Female , Gene Expression Regulation/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Histones/genetics , Humans , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Neoplasms/genetics , Neoplasms/pathology , Organ Specificity , Promoter Regions, Genetic
17.
Nucleic Acids Res ; 45(20): 11684-11699, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28977539

ABSTRACT

Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.


Subject(s)
Cell Transdifferentiation/genetics , Cellular Reprogramming/genetics , Chromatin Assembly and Disassembly/genetics , MyoD Protein/genetics , Blotting, Western , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling/methods , Gene Ontology , HEK293 Cells , Humans , Microscopy, Confocal , MyoD Protein/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin/cytology
18.
Epigenetics ; 12(2): 123-138, 2017 02.
Article in English | MEDLINE | ID: mdl-27911668

ABSTRACT

Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study-owing to their myogenic DMRs-overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA Methylation , 5-Methylcytosine/metabolism , Adult , Aged , Brain/metabolism , Cadherins/genetics , Cadherins/metabolism , Child, Preschool , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Myocardium/metabolism , Organ Specificity , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Yale J Biol Med ; 89(4): 441-455, 2016 12.
Article in English | MEDLINE | ID: mdl-28018137

ABSTRACT

Tissue-specific enhancers are critical for gene regulation. In this study, we help elucidate the contribution of muscle-associated differential DNA methylation to the enhancer activity of highly muscle-specific genes. By bioinformatic analysis of 44 muscle-associated genes, we show that preferential gene expression in skeletal muscle (SkM) correlates with SkM-specific intragenic and intergenic enhancer chromatin and overlapping foci of DNA hypomethylation. Some genes, e.g., CASQ1 and FBXO32, displayed broad regions of both SkM- and heart-specific enhancer chromatin but exhibited focal SkM-specific DNA hypomethylation. Half of the genes had SkM-specific super-enhancers. In contrast to simple enhancer/gene-expression correlations, a super-enhancer was associated with the myogenic MYOD1 gene in both SkM and myoblasts even though SkM has < 1 percent as much MYOD1 expression. Local chromatin differences in this super-enhancer probably contribute to the SkM/myoblast differential expression. Transfection assays confirmed the tissue-specificity of the 0.3-kb core enhancer within MYOD1's super-enhancer and demonstrated its repression by methylation of its three CG dinucleotides. Our study suggests that DNA hypomethylation increases enhancer tissue-specificity and that SkM super-enhancers sometimes are poised for physiologically important, rapid up-regulation.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Muscle, Skeletal/metabolism , Calcium-Binding Proteins/genetics , Calsequestrin , Cell Line, Tumor , Computational Biology , Gene Expression Regulation/genetics , Humans , In Vitro Techniques , Mitochondrial Proteins/genetics , Muscle Proteins/genetics , MyoD Protein/genetics , SKP Cullin F-Box Protein Ligases/genetics
20.
Epigenomics ; 8(1): 13-31, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26756355

ABSTRACT

AIM: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. MATERIALS & METHODS: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. RESULTS: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. CONCLUSION: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology.


Subject(s)
DNA Methylation , Homeodomain Proteins/genetics , Myotonin-Protein Kinase/genetics , Proteins/genetics , Cells, Cultured , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Muscle Cells/cytology , Myotonic Dystrophy/genetics , Myotonin-Protein Kinase/chemistry , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...