Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475294

ABSTRACT

Algae-based biopolymers can be used in diverse energy-related applications, such as separators and polymer electrolytes in batteries and fuel cells and also as microalgal biofuel, which is regarded as a highly renewable energy source. For these purposes, different physical, thermochemical, and biochemical properties are necessary, which are discussed within this review, such as porosity, high temperature resistance, or good mechanical properties for batteries and high energy density and abundance of the base materials in case of biofuel, along with the environmental aspects of using algae-based biopolymers in these applications. On the other hand, bacterial biopolymers are also often used in batteries as bacterial cellulose separators or as biopolymer network binders, besides their potential use as polymer electrolytes. In addition, they are also regarded as potential sustainable biofuel producers and converters. This review aims at comparing biopolymers from both aforementioned sources for energy conversion and storage. Challenges regarding the production of algal biopolymers include low scalability and low cost-effectiveness, and for bacterial polymers, slow growth rates and non-optimal fermentation processes often cause challenges. On the other hand, environmental benefits in comparison with conventional polymers and the better biodegradability are large advantages of these biopolymers, which suggest further research to make their production more economical.

2.
Heliyon ; 10(3): e25576, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38356578

ABSTRACT

3T3 Swiss albino mouse cells are often used in biotechnological applications. These cells can grow adherently on suitable surfaces. In our study, they were grown on different titanium substrates, comparing commercially available titanium sheets of grade 1 and grade 2, respectively, with Ti64 which was 3D printed with different porosity in order to identify potential substitutes for common well-plates, which could - in case of 3D printed substrates - be produced in various shapes and dimensions and thus broaden the range of substrates for cell growth in biotechnology and tissue engineering. In addition, thin layers of poly(acrylonitrile) (PAN) nanofibers were electrospun on these substrates to add a nanostructure. The common titanium sheets showed lower cell cover factors than common well plates, which could not be improved by the thin nanofibrous coating. However, the Ti sheets with nanofiber mat coatings showed higher cell adhesion and proliferation than pure PAN nanofiber mats. The 3D printed Ti64 substrates prepared by laser metal fusion, on the other hand, enabled significantly higher proliferation of (66 ± 8)% cover factor after three days of cell growth than well plates which are usually applied as the gold standard for cell cultivation ((48 ± 11)% cover factor under identical conditions). Especially the Ti64 samples with higher porosity showed high cell adhesion and proliferation. Our study suggests investigating such porous Ti64 samples further as a potential future optimum for cell adhesion and proliferation.

3.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38138364

ABSTRACT

Microelectromechanical systems (MEMS) combine electrical and mechanical functions and are nowadays broadly applied in many technology fields, often as sensors or actors [...].

4.
Polymers (Basel) ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836000

ABSTRACT

Electrospun nanofiber mats have a high specific surface area and very small pores which can be tailored by the spinning process. They are thus highly suitable as filters for small particles and molecules, such as organic dyes. On the other hand, they are usually very thin and thus have low mechanical properties. As a potential reinforcement, mycelium of Pleurotus ostreatus was grown on poly(acrylonitrile) nanofiber mats and thermally solidified after fully covering the nanofiber mats. This study investigates whether the filtration efficiency of the nanofiber mats is altered by the mycelium growing through it and whether the mechanical properties of the nanofibrous filters can be improved in this way. The study shows fast and reliable growth of the mycelium on the nanofiber mats and high filtration efficiency for astra blue and chlorophyll, while indigo carmine showed only very low filtration efficiency of up to 20%. For chlorophyll and safranin, membranes with mycelium showed higher filtration than pure nanofiber mats. In diffusion cell tests, especially astra blue was strongly adsorbed on the membranes with mycelium.

5.
Nanoscale Adv ; 5(21): 5900-5906, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37881710

ABSTRACT

Nanofibers are currently among the most researched nanomaterials in materials science. Various high-resolution microscopy techniques are used for morphological investigations, with the diameter as primary characteristic. Since methodological factors influencing the diameter distribution are usually ignored, numerical values can hardly be compared across different or even within single studies. Here, we investigate influencing factors such as microscopy technique, degree of magnification, eventual coatings, and the analysts' bias in the image selection and evaluation. We imaged a single nanofiber sample using scanning electron microscopy (SEM), helium ion microscopy (HIM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). These techniques yield significant methodological variations between the diameter distributions. We further observed a strong influence of analysts' subjectivity, with a consistent average deviation between 4 different analysts of up to 31%. The average deviation between micrographs within each category was 14%, revealing a considerable influence of micrograph selection and strong potential for cherry picking. The mean values were mostly comparable with the results using automated image analysis software, which was more reproducible, much faster, and more accurate for images with lower magnification. The results demonstrate that one of the most frequently measured characteristics of nanofibers is subject to strong systematic fluctuations that are rarely if ever addressed.

6.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686926

ABSTRACT

Exchange bias (EB) is a unidirectional anisotropy occurring in exchange-coupled ferromagnetic/antiferromagnetic systems, such as thin films, core-shell particles, or nanostructures. In addition to a horizontal shift of the hysteresis loop, defining the exchange bias, asymmetric loops and even vertical shifts can often be found. While the effect is used in hard disk read heads and several spintronics applications, its origin is still not fully understood. Especially in nanostructures with their additional shape anisotropies, interesting and often unexpected effects can occur. Here, we provide an overview of the most recent experimental findings and theoretical models of exchange bias in nanostructures from different materials.

7.
Nanomaterials (Basel) ; 13(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764536

ABSTRACT

Nanofiber mats can be electrospun by different techniques, usually subdivided into needle-based and needleless. The latter allow for producing large-area nanofiber mats, e.g., with a width of 50 cm and lengths of several meters, if electrospinning proceeds for several hours, depending on the required thickness. Even spinning smaller samples, however, raises the question of homogeneity, especially if defined mechanical properties or a defined thickness is required, e.g., for filtration purposes. Very often, only the inner parts of such electrospun nanofiber mats are used to avoid too high variation of the nanofiber mat thickness. For this study, we used wire-based electrospinning to prepare nanofiber mats with slightly varying spinning parameters. We report investigations of the thickness and mass per unit area, measured on different positions of needleless electrospun nanofiber mats. Martindale abrasion tests on different positions are added as a measure of the mechanical properties. All nanofiber mats show unexpectedly strong variations of thickness, mass per unit area, and porosity, as calculated from the apparent density of the membranes. The thickness especially varied by nearly one order of magnitude within one sample, while the apparent density, as the most uniform parameter, still showed variations by more than a factor of two within one sample. This shows that even for apparently highly homogeneous areas of such nanofiber mats, variations cannot be neglected for all potential applications.

8.
Polymers (Basel) ; 15(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37688162

ABSTRACT

Possibilities of direct 3D printing on textile fabrics have been investigated with increasing intensity during the last decade, leading to composites which can combine the positive properties of both parts, i.e., the fast production and lateral strength of textile fabrics with the flexural strength and point-wise definable properties of 3D printed parts. These experiments, however, were mostly performed using fused deposition modeling (FDM), which is an inexpensive and broadly available technique, but which suffers from the high viscosity of the molten polymers, often impeding a form-locking connection between polymer and textile fibers. One study reported stereolithography (SLA) to be usable for direct printing on textile fabrics, but this technique suffers from the problem that the textile material is completely soaked in resin during 3D printing. Combining the advantages of FDM (material application only at defined positions) and SLA (low-viscous resin which can easily flow into a textile fabric) is possible with PolyJet modeling (PJM) printing. Here, we report the first proof-of-principle of PolyJet printing on textile fabrics. We show that PJM printing with a common resin on different textile fabrics leads to adhesion forces according to DIN 53530 in the range of 30-35 N, which is comparable with the best adhesion forces yet reported for fused deposition modeling (FDM) printing with rigid polymers on textile fabrics.

9.
Membranes (Basel) ; 13(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37233549

ABSTRACT

Electrospun nanofiber mats are nowadays often used for biotechnological and biomedical applications, such as wound healing or tissue engineering. While most studies concentrate on their chemical and biochemical properties, the physical properties are often measured without long explanations regarding the chosen methods. Here, we give an overview of typical measurements of topological features such as porosity, pore size, fiber diameter and orientation, hydrophobic/hydrophilic properties and water uptake, mechanical and electrical properties as well as water vapor and air permeability. Besides describing typically used methods with potential modifications, we suggest some low-cost methods as alternatives in cases where special equipment is not available.

10.
Membranes (Basel) ; 13(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37103868

ABSTRACT

Electrospun nanofiber mats are usually applied in fields where their high specific surface area and small pore sizes are important, such as biotechnology or filtration. Optically, they are mostly white due to scattering from the irregularly distributed, thin nanofibers. Nevertheless, their optical properties can be modified and become highly important for different applications, e.g., in sensing devices or solar cells, and sometimes for investigating their electronic or mechanical properties. This review gives an overview of typical optical properties of electrospun nanofiber mats, such as absorption and transmission, fluorescence and phosphorescence, scattering, polarized emission, dyeing and bathochromic shift as well as the correlation with dielectric constants and the extinction coefficient, showing which effects may occur and can be measured by which instruments or used for different applications.

11.
Polymers (Basel) ; 15(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36850264

ABSTRACT

Stab-resistant garments have been used for centuries, utilizing metals, paper, or polymeric structures, often inspired by natural structures such as scales. Nowadays, stab-resistant vests or vest inserts are used by police and security personnel, but also by bus drivers, ambulance officers, and other people who are empirically often attacked on duty. Since stab protection garments are often heavy and thus uncomfortable and not well accepted, whether in the form of chain-mail or metal inserts in protective vests, researchers are striving to find lightweight, drapable alternatives, often based on polymeric materials. These research attempts have recently focused on textile fabrics, mostly with impregnation by shear-thickening fluids (STFs) or ceramic coatings, as well as on lightweight composites. The first studies on 3D printed polymeric objects with tailored shapes, as well as theoretical investigations of the stab-protective effect of different materials, have been published throughout the last years. Here, we discuss different measurement methods, including dynamic and quasistatic methods, and correlations of stab-resistance with other physical properties, before we give an overview of recent developments of stab-resistant polymers, using different materials/material combinations and structures.

12.
Materials (Basel) ; 15(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079377

ABSTRACT

This new Special Issue of Materials entitled "3D/4D Printing Application for Shape Memory Materials" aims to publish original and review papers dealing with basic and applied research on this emerging technology [...].

13.
Polymers (Basel) ; 14(18)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36146040

ABSTRACT

Three-dimensional printing enables building objects shaped with a large degree of freedom. Additional functionalities can be included by modifying the printing material, e.g., by embedding nanoparticles in the molten polymer feedstock, the resin, or the solution used for printing, respectively. Such composite materials may be stronger or more flexible, conductive, magnetic, etc. Here, we give an overview of magnetic composites, 3D-printed by different techniques, and their potential applications. The production of the feedstock is described as well as the influence of printing parameters on the magnetic and mechanical properties of such polymer/magnetic composites.

14.
Polymers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890602

ABSTRACT

While fused deposition modeling (FDM) and other relatively inexpensive 3D printing methods are nowadays used in many applications, the possible areas of using FDM-printed objects are still limited due to mechanical and thermal constraints. Applications for space, e.g., for microsatellites, are restricted by the usually insufficient heat resistance of the typical FDM printing materials. Printing high-temperature polymers, on the other hand, necessitates special FDM printers, which are not always available. Here, we show investigations of common polymers, processible on low-cost FDM printers, under elevated temperatures of up to 160 °C for single treatments. The polymers with the highest dimensional stability and mechanical properties after different temperature treatments were periodically heat-treated between -40 °C and +80 °C in cycles of 90 min, similar to the temperature cycles a microsatellite in the low Earth orbit (LEO) experiences. While none of the materials under investigation fully maintains its dimensions and mechanical properties, filled poly(lactic acid) (PLA) filaments were found most suitable for applications under these thermal conditions.

15.
Polymers (Basel) ; 14(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335597

ABSTRACT

Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.

16.
Bioengineering (Basel) ; 9(2)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35200437

ABSTRACT

To measure biosignals constantly, using textile-integrated or even textile-based electrodes and miniaturized electronics, is ideal to provide maximum comfort for patients or athletes during monitoring. While in former times, this was usually solved by integrating specialized electronics into garments, either connected to a handheld computer or including a wireless data transfer option, nowadays increasingly smaller single circuit boards are available, e.g., single-board computers such as Raspberry Pi or microcontrollers such as Arduino, in various shapes and dimensions. This review gives an overview of studies found in the recent scientific literature, reporting measurements of biosignals such as ECG, EMG, sweat and other health-related parameters by single circuit boards, showing new possibilities offered by Arduino, Raspberry Pi etc. in the mobile long-term acquisition of biosignals. The review concentrates on the electronics, not on textile electrodes about which several review papers are available.

17.
Polymers (Basel) ; 14(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35215634

ABSTRACT

Carbon nanofibers are used for a broad range of applications, from nano-composites to energy storage devices. They are typically produced from electrospun poly(acrylonitrile) nanofibers by thermal stabilization and carbonization. The nanofiber mats are usually placed freely movable in an oven, which leads to relaxation of internal stress within the nanofibers, making them thicker and shorter. To preserve their pristine morphology they can be mechanically fixated, which may cause the nanofibers to break. In a previous study, we demonstrated that sandwiching the nanofiber mats between metal sheets retained their morphology during stabilization and incipient carbonization at 500 °C. Here, we present a comparative study of stainless steel, titanium, copper and silicon substrate sandwiches at carbonization temperatures of 500 °C, 800 °C and 1200 °C. Helium ion microscopy revealed that all metals mostly eliminated nanofiber deformation, whereas silicone achieved the best results in this regard. The highest temperatures for which the metals were shown to be applicable were 500 °C for silicon, 800 °C for stainless steel and copper, and 1200 °C for titanium. Fourier transform infrared and Raman spectroscopy revealed a higher degree of carbonization and increased crystallinity for higher temperatures, which was shown to depend on the substrate material.

18.
Polymers (Basel) ; 14(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35160526

ABSTRACT

Electrospinning can be used to produce nanofiber mats containing diverse nanoparticles for various purposes. Magnetic nanoparticles, such as magnetite (Fe3O4), can be introduced to produce magnetic nanofiber mats, e.g., for hyperthermia applications, but also for basic research of diluted magnetic systems. As the number of nanoparticles increases, however, the morphology and the mechanical properties of the nanofiber mats decrease, so that freestanding composite nanofiber mats with a high content of nanoparticles are hard to produce. Here we report on poly (acrylonitrile) (PAN) composite nanofiber mats, electrospun by a needle-based system, containing 50 wt% magnetite nanoparticles overall or in the shell of core-shell fibers, collected on a flat or a rotating collector. While the first nanofiber mats show an irregular morphology, the latter are quite regular and contain straight fibers without many beads or agglomerations. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveal agglomerations around the pure composite nanofibers and even, round core-shell fibers, the latter showing slightly increased fiber diameters. Energy dispersive X-ray spectroscopy (EDS) shows a regular distribution of the embedded magnetic nanoparticles. Dynamic mechanical analysis (DMA) reveals that mechanical properties are reduced as compared to nanofiber mats with smaller amounts of magnetic nanoparticles, but mats with 50 wt% magnetite are still freestanding.

19.
Environ Technol ; 43(9): 1340-1351, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32975476

ABSTRACT

Marine macroalgae are cultivated for diverse applications, from biofuel and biogas to biofiltering, from food to cosmetics or pharmaceuticals. Since macroalgae cultivation does not compete with land-based food crops for the necessary arable land or fresh water, it can increase the possibilities of sustainably harvested biomass. New technologies permit even land-based growing of marine macroalgae, besides the more common coastal or offshore cultivation. All these technologies, however, raise the question of how to provide ideal cultivation conditions, especially for adherent macroalgae, and of how to harvest them economically and sustainably. While some reports about growing marine macroalgae on diverse textile materials, such as polyester ropes or polypropylene nets, can be found in the literature, we report here for the first time on the growth of a marine macroalga on knitted fabrics. In our study, Ectocarpus sp. was cultivated in shallow rectangular cultivation vessels on knitted fabrics of various materials and structures revealing a significant influence of both parameters. Undesired changes of the pH value in the cultivation system as well as foam generation were attributed to textile auxiliaries. Considering all these influences, the best-suited knitted fabrics were identified as open-pore structures from hairy yarns made partly or completely from natural fibres.


Subject(s)
Seaweed , Biofuels , Biomass , Fresh Water , Seaweed/chemistry , Textiles
20.
Micromachines (Basel) ; 12(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34683276

ABSTRACT

Poly(lactic acid) (PLA) is one of the most often used polymers in 3D printing based on the fused deposition modeling (FDM) method. On the other hand, PLA is also a shape memory polymer (SMP) with a relatively low glass transition temperature of ~60 °C, depending on the exact material composition. This enables, on the one hand, so-called 4D printing, i.e., printing flat objects which are deformed afterwards by heating them above the glass transition temperature, shaping them and cooling them down in the desired shape. On the other hand, objects from PLA which have been erroneously deformed, e.g., bumpers during an accident, can recover their original shape to a certain amount, depending on the applied temperature, the number of deformation cycles, and especially on the number of broken connections inside the object. Here, we report on an extension of a previous study, investigating optimized infill designs which avoid breaking in 3-point bending tests and thus allow for multiple repeated destruction and recovery cycles with only a small loss in maximum force at a certain deflection.

SELECTION OF CITATIONS
SEARCH DETAIL
...