Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Prosthodont ; 14(5): 285-293, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36452361

ABSTRACT

PURPOSE: This study evaluated the relationship among translucency, crystalline phase, grain size, and fracture toughness of zirconia. MATERIALS AND METHODS: Four commercial zirconia - Prettau®Anterior® (PA), Prettau® (P), InCorisZI (ZI), and InCorisTZI (TZI)- were selected for this study. The bar specimens were prepared to determine fracture toughness by using chevron notched beam method with four-point bending test. The grain size was evaluated by a mean linear intercept method using a scanning electron microscope. X-ray diffraction and Rietveld refinement were performed to evaluate the amount of tetragonal and cubic phases of zirconia. Contrast ratio (CR) was measured to investigate the level of translucency. RESULTS: PA had the lowest fracture toughness among other groups (P < .05). In addition, the mean fracture toughness of P was significantly less than that of ZI, but there was no difference compared with TZI. Regarding grain size measurement, PA had the largest average grain size among the groups. P obtained larger grain size than ZI and TZI (P < .05). However, there was no significant difference between ZI and TZI. Moreover, PA had the lowest CR value compared with the other groups (P < .05). This means PA was the most translucent material in this study. Rietveld refinement found that PA presented the greatest percentage of cubic phase, followed by TZI, ZI, and P, respectively. CONCLUSION: The different approaches are used by manufacturers to fabricate various types of translucent zirconia with different levels of translucency and mechanical properties, which should be concerned for material selection for successful clinical outcome.

2.
J Indian Prosthodont Soc ; 22(3): 272-278, 2022.
Article in English | MEDLINE | ID: mdl-36511058

ABSTRACT

Aim: The aim of this study was to investigate the combined effect of ceramic material, ceramic thickness, and implant abutment background to the final color of restorations. Settings and Design: This was a comparative in vitro study. Materials and Methods: Three different types of monolithic and porcelain-veneered zirconia disc-shaped specimens (Prettau Anterior, VITA YZ ST, and VITA YZ HT) were prepared in A3 shade with two different thicknesses (1 mm and 1.5 mm) (n = 10). Each zirconia material was made of 4-mm thickness as a control specimen of each monolithic zirconia type, and 4-mm thick veneering ceramic (VITA VM9 Base Dentine) was made as a control for veneered zirconia groups. Three simulated implant abutments were fabricated from titanium, white-shaded and yellow-shaded zirconia. The zirconia specimens were placed on different abutment backgrounds, and the color difference (ΔE) between experimental and control specimens was measured. Statistical Analysis Used: The three-way ANOVA and the Scheffé test were used for data analysis (α = 0.05). Results: The mean ΔE values between two thicknesses were significantly different in every background for all zirconia materials. The ΔE values of zirconia specimens on yellow zirconia were lower than those of other abutments. The clinically acceptable ΔE value (ΔE <3) was found in some monolithic zirconia specimens on white-shaded and yellow-shaded abutments, while the ΔE value is approximately 3 or less in all 1.5-mm thick porcelain-veneered zirconia groups. Conclusions: Different zirconia materials on implant abutments affected the final color of restorations. To achieve satisfactory color, the minimum thickness of zirconia restorations should be at least 1.5 mm on yellow zirconia abutment.


Subject(s)
Dental Implants , Dental Porcelain , Materials Testing , Color , Dental Materials
3.
Polymers (Basel) ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36015520

ABSTRACT

The antimicrobial properties, cell cytotoxicity and surface hardness of soft lining materials (GC soft liner, Viscogel and Coe comfort) incorporated with various concentrations of Litsea cubeba essential oil (LCEO) were evaluated. The minimum inhibitory concentrations of LCEO against Candida albicans and Streptococcus mutans were 1.25% v/v and 10% v/v, respectively. However, when LCEO was incorporated into the three soft lining materials (GC soft liner, Viscogel and Coe comfort), 10% v/v and 30% v/v of LCEO could inhibit the growth of C. albicans and S. mutans, respectively. The extracts of soft lining materials with 10% and 30% v/v LCEO, 2% chlorhexidine, 30% v/v nystatin and no additive were used for cytotoxicity tests on a human gingival fibroblast cell line. There was no significant difference in cell viability in all groups with additives compared to the no additive group (p > 0.05). Surface hardness increased significantly between 2 h and 7 day incubation times in all groups, including the controls (p < 0.05). A higher LCEO concentration had a dose-dependent effect on the surface hardness of all soft lining materials (p < 0.05). However, the surface hardness of materials with additive remained in accordance with ISO 10139-1. LCEO could be used as a natural product against oral pathogens, without having a negative impact on soft lining materials.

4.
Molecules ; 27(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35745048

ABSTRACT

This study aimed to examine the retentive characteristics of each retentive element material and the effects from thermocycling using the two implant-retained mandibular overdenture model. Two stud abutments and three retentive element materials; nylon, polyetheretherketone (PEEK) and polyvinylsiloxane (PVS) were used in this study. Four tested groups, with a total of 40 overdentures, were fabricated, including a Locator® abutment with nylon retention insert (NY), Novaloc® abutment with PEEK retention insert (PK), Locator® abutment with PVS retention insert (RL), and Novaloc® abutment with PVS retention insert (RN). The retentive force (N) was measured before thermocycling, and at 2500, 5000, and 10,000 cycles after thermocycling. Significant changes in the percentage of retention loss were found in the NY and PK groups (p < 0.05) at 6 and 12 months for the RL group (p < 0.05) after artificial aging. The RN group exhibited a constant retentive force (p > 0.05). The tendency of the percentage of retention loss significantly increased for PEEK, nylon, and PVS silicone over time. The results of the present study implied that retentive element materials tend to lose their retentive capability as a result of thermal undulation and water dispersion. Nylon and PEEK, comprising strong polar groups in polymer chains, showed a higher rate of retention loss than polyvinylsiloxane.


Subject(s)
Denture Retention , Denture, Overlay , Denture Retention/methods , Ketones , Mandible , Nylons , Polyethylene Glycols
5.
Dent Mater J ; 39(6): 1016-1021, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-32727964

ABSTRACT

The purpose of this study was to evaluate anti-candidal activity, gelation time, and surface hardness of a short-term soft lining material incorporated with varying concentrations of Piper betle extract (0.25 to 20% w/w). Agar-diffusion assay was conducted to evaluate an inhibitory effect against Candida albicans. The gelation time was assessed and surface hardness was measured at 2 h and 7 days by Shore AO durometer. A soft liner containing at least 5% w/w of P. betle extract was observed the inhibitory effect against C. albicans. An increasing of P. betle concentrations provided larger inhibition zone. Incorporating 5% w/w of P. betle extract into the soft liner did not significantly alter its gelation time and surface hardness (ANOVA; p>0.05). The optimum composition at 5% w/w of P. betle extract can be used as an additive in the soft liner to provide the anti-candidal activity without significantly affect these two main properties.


Subject(s)
Piper betle , Candida albicans , Hardness , Plant Extracts/pharmacology , Time
6.
Am J Dent ; 31(Sp Is B): 32B-36B, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-31099210

ABSTRACT

PURPOSE: The study and development of antibacterial materials for use in dental applications is growing with the development of novel materials and procedures. Examination of the effects of such antibacterial materials on oral pathogens as well as on stability and longevity of dental restorations is of paramount importance to the field. RESULTS: This review addressed the range of topics covered by the manuscripts presented at the Seoul symposium on antibacterial dental materials. CLINICAL SIGNIFICANCE: Based on the presented works, it seems that the emerging antibacterial and bioactive mate-rials can potentially benefit restorative dentistry; however, like many other subjects in clinical dentistry, good quality evidence on their effectiveness under clinical situations is yet to be accumulated.


Subject(s)
Anti-Bacterial Agents , Dental Restoration, Permanent , Dental Materials , Dentistry
7.
Acta Biomater Odontol Scand ; 1(2-4): 51-58, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28642901

ABSTRACT

Objective: Gram-positive cariogenic bacteria are etiological agents in dental caries; therefore, strategies to inhibit these bacteria to reduce the incident of this disease have intensified. In this study, we investigated antibacterial activities of titanates and gold-titanates against Lactobacillus casei (Lc) and Streptococcus mutans (Sm). Materials and methods: Monosodium titanate (MST), nanomonosodium titanate (nMST) and amorphous peroxo-titanate (APT), which are inorganic compounds with high-binding affinity for specific metal ions, were used. Total bacterial proteins were measured to represent bacterial cell mass after 24 h incubation with gold-titanates. We further examined the effect of nMST-Au(III) concentrations (10,200,400 mg/L) on Lc and Sm cell viability over time via Live/Dead fluorescent staining and colony forming units (CFUs). Transmission electron microscopy (TEM) was used to determine specific locations on the bacterial cells affected by the nMST-Au(III). Results: We found all gold-titanates and APT alone reduced bacterial protein for Lc (p value <0.001) while only MST-Au(III) and nMST-Au(III) affected Sm growth (p value <0.001). Overall, nMST-Au(III) showed the most effectiveness against both Lc and Sm at 400 mg/L. The Live/Dead staining showed all concentrations of nMST-Au(III) affected Lc growth but only 200 and 400 mg/L nMST-Au(III) interrupted Sm growth. The growth curves based on CFUs/mL showed all nMST-Au(III) concentrations affected growth of both Lc and Sm. TEM images showed nMST-Au(III) attached to Lc and Sm cell wall and were internalized into both cells.Conclusions: nMST-Au(III) demonstrated potential antimicrobial activity against Gram-positive cariogenic bacteria. These results support further development of nMST-Au(III) as a potential novel material to prevent dental caries.

SELECTION OF CITATIONS
SEARCH DETAIL