Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 18768-18781, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588442

ABSTRACT

Electrocatalytic hydrogen evolution reactions (HER) are envisaged as the most promising sustainable approach for green hydrogen production. However, the considerably high cost often associated with such reactions, particularly upon scale-up, poses a daunting challenge. Herein, a facile, effective, and environmentally benign one-pot scalable approach is developed to fabricate MnM (M═Co, Cu, Ni, and Fe) nanocrystals supported over in situ formed carbon nanofibers (MnM/C) as efficient noble-metal-free electrocatalysts for HER. The formation of carbon nanofibers entails impregnating cellulose in an aqueous solution of metal precursors, followed by annealing the mixture at 550 °C. During the impregnation process, cellulose acts as a reactor for inducing the in situ reductions of MnM salts with the assistance of ether and hydroxyl groups to drive the mass production (several grams) of ultralong (5 ± 1 µM) carbon nanofibers ornamented with MnM nanoparticles (10-14 nm in size) at an average loading of 2.87 wt %. For better electrocatalytic HER benchmarking, the fabricated catalysts were tested over different working electrodes, i.e., carbon paper, carbon foam, and glassy carbon, in the presence of different electrolytes. All the fabricated MnM/C catalysts have demonstrated an appealing synergetic-effect-dependent HER activity, with MnCo/C exhibiting the best performance over carbon foam, close to that of the state-of-the-art commercial Pt/C (10 wt % Pt), with an overpotential of 11 mV at 10 mA cm-2, a hydrogen production rate of 2448 mol g-1 h-1, and a prolonged stability of 2 weeks. The HER performance attained by MnCo/C nanofibers is among the highest reported for Pt-free electrocatalysts, thanks to the mutual alloying effect, higher synergism, large surface area, and active interfacial interactions over the nanofibers. The presented findings underline the potential of our approach for the large-scale production of cost-effective electrocatalysts for practical HER.

2.
ACS Omega ; 9(7): 7439-7451, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405481

ABSTRACT

Porous Pd-based electrocatalysts are promising materials for alkaline direct ethanol fuel cells (ADEFCs) and ethanol sensors in the development of renewable energy and point-of-contact ethanol sensor test kits for drunk drivers. However, experimental and theoretical investigations of the interfacial interaction among Pd nanocrystals on supports (i.e., carbon black (CB), onion-like carbon (OLC), and CeO2/OLC) toward ADEFC and ethanol sensors are not yet reported. This is based on the preparation of Pd-CeO2/OLC nanocrystals by the sol-gel and impregnation methods. Evidently, the porous Pd-CeO2/OLC significantly increased membrane-free micro-3D-printed ADEFC performance with a high peak power density (Pmax = 27.15 mW cm-2) that is 1.38- and 7.58-times those of Pd/OLC (19.72 mW cm-2) and Pd/CB (3.59 mW cm-2), besides its excellent stability for 48 h. This is due to the excellent interfacial interaction among Pd, CeO2, and OLC, evidenced by density functional theory (DFT) simulations that showed a modulated Pd d-band center and facile active oxygenated species formation by the CeO2 needed for ethanol fuel cells. Similarly, Pd-CeO2/OLC gives excellent sensitivity (0.00024 mA mM-1) and limit of detection (LoD = 8.7 mM) for ethanol sensing and satisfactory recoveries (89-108%) in commercial alcoholic beverages (i.e., human serum, Amstel beer, and Nederberg Wine). This study shows the excellent possibility of utilizing Pd-CeO2/OLC for future applications in fuel cells and alcohol sensors.

3.
Langmuir ; 40(6): 3260-3267, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38290524

ABSTRACT

Graphitic-phase carbon nitride (g-C3N4) materials have exhibited increasingly remarkable performance as emerging electrochemiluminescence (ECL) emitters, owing to their unique optical and electronic properties; however, the ECL merits of porous g-C3N4 nanofibers doped with ternary metals are not yet explored. Deciphering the ECL properties of trimetal-doped g-C3N4 nanofibers could provide an exquisite pathway for ultrasensitive sensing and imaging with impressive advantages of minimal background signal, great sensitivity, and durability. Herein, we rationally synthesized g-C3N4 nanofibers doped atomically with Mn, Fe, and Co elements (Mn/Fe/Co/g-C3N4) in a one-pot via the protonation in ethanol and annealing process driven by the rolling up mechanism. The ECL performance of g-C3N4 with and without metal dopants was investigated and compared with standard Ru(bpy)32+ in the presence of potassium persulfate (K2S2O8) as the coreactant. Notably, g-C3N4 nanofibers doped with metal ions exhibited an ECL efficiency of 483% that was 4.83 times higher than that of Ru(bpy)32+. Mechanistic investigations unveiled that the g-C3N4 nanofibers possess a large surface area and, as a result, exhibit a reduced interfacial impedance within the porous microstructure. These factors contribute to the acceleration of charge transfer rates and the stabilization of charge carriers and excitons, ultimately facilitating the ECL process. This research endeavor may pave the way for a new hot research area and serves as a powerful tool for elucidating fundamental inquiries of ECL on one-dimensional g-C3N4 nanostructures.

4.
Langmuir ; 39(39): 13830-13840, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37724885

ABSTRACT

The interfacial engineering of Pd-based alloys (i.e., PdM with distinct morphologies, compositions, and strain defects) is an efficient way for enhanced catalytic activity; however, it remains a grand challenge to fabricate such alloys in aqueous solutions without heating, organic solvents, and multiple reaction steps. Herein, we present a simple, aqueous-phase, one-step, and ultrafast approach for the interfacial engineering of surfactant-free porous PdM (M = Cu, Au, and Mn) nanocrystals with well-controlled spongy-like morphology and compositions. The electronic interaction in PdM nanocrystals and their effect on the alkaline electrochemical ethanol oxidation reaction (EOR) are investigated using XRD, XPS, and electrochemical tests. Notably, integrating M metals into Pd atoms results in upshifting the d-band center of Pd and subsequently modulating the EOR activity and stability substantially. The EOR mass activity (10.78 A/mgPd (6.93 A/mgPdCu)) of PdCu was 1.83, 3.09, 4.51, and 53.90 times higher than those of AuPd (5.90 A/mgPd (3.27 A/mgAuPd)), PdMn (3.48 A/mgPd (3.19 A/mgPdMn)), Pd (2.39 A/mgPd), and Pd/C (0.20 A/mgPd), respectively, besides substantial durability after 1000 cycles. This is due to the porous two-dimensional morphology, a low synergetic effect, higher interfacial interaction, and greater active surface area of PdCu, besides a high Cu content with more oxophilicity that facilitates activation/dissociation of H2O to generate -OH species needed for quick EOR electrocatalysis. The electrochemical impedance spectroscopy (EIS) reveals better electrolyte/electrode interfacial interaction and lower charge transfer resistance on PdCu. The EOR activity of PdCu porous sponge-like nanocrystals was superior to all previously reported Pd-based alloys for electrochemical EOR. This study indicates that binary Pd-based catalysts with less synergetic effect are preferred for boosting the EOR activity, which could help in manipulating the surface properties of Pd-based alloys to optimize EOR performance.

5.
ACS Omega ; 8(25): 22361-22381, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396246

ABSTRACT

A carbon nitride (C3N4) nanomaterial has superior mechanical, thermal, and tribological properties, which make them attractive for various applications, including corrosion-resistant coatings. In this research, newly synthesized C3N4 nanocapsules with different concentrations (0.5, 1.0, and 2.0 wt %) of ZnO as a dopant were incorporated into the NiP coating using an electroless deposition technique. The nanocomposite coatings either ZnO-doped (NiP-C3N4/ZnO) or undoped (NiP-C3N4) were heat-treated at 400 °C for 1 h. The as-plated and heat-treated (HT) nanocomposite coatings were characterized by their morphology, phases, roughness, wettability, hardness, corrosion protection, and antibacterial properties. The results indicated that the microhardness of as-plated and heat-treated nanocomposite coatings was significantly improved after the incorporation of 0.5 wt % ZnO-doped C3N4 nanocapsules. The outcomes of electrochemical studies revealed that the corrosion resistance of the HT coatings is higher than the corresponding as-plated ones. The highest corrosion resistance is achieved on the heat-treated NiP-C3N4/1.0 wt % ZnO coatings. Although the presence of ZnO in the C3N4 nanocapsules increased its surface area and porosity, the C3N4/ZnO nanocapsules prevented localized corrosion by filling the microdefects and pores of the NiP matrix. Furthermore, the colony-counting method used to evaluate the antibacterial behavior of the different coatings demonstrated superior antibacterial properties, namely, after heat treatment. Therefore, the novel perspective C3N4/ZnO nanocapsules can be utilized as a reinforcement nanomaterial in improving the mechanical and anticorrosion performance of NiP coatings in chloride media, together with providing superior antibacterial properties.

6.
Heliyon ; 9(6): e16890, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484255

ABSTRACT

Morphologically controlled Pd-based nanocrystals are the most efficient strategies for improving the electrocatalytic ethanol oxidation reaction (EOR) performance; however, their morphological-EOR activity relationship and effect of electrolytes at a wide pH range are still ambiguous. Here, we have synthesized porous self-standing Pd clustered nanospheres (Pd-CNSs) and Pd nanocubes (Pd-NCBs) for the EOR in acidic (H2SO4), alkaline (KOH), and neutral (NaHCO3) electrolytes compared to commercial spherical-like Pd/C catalysts. The fabrication process comprises the ice-cooling reduction of Pd precursor by sodium borohydride (NaBH4) and l-ascorbic acid to form Pd-CNSs and Pd-NCBs, respectively. The EOR activity of Pd-CNSs significantly outperformed those of Pd-NCBs, and Pd/C in all electrolytes, but the EOR activity was better in KOH than in H2SO4 and NaHCO3. This is due to the 3D porous clustered nanospherical morphology that makes Pd active centers more accessible and maximizes their utilization during EOR. The EOR specific/mass activities of Pd-CNSs reached (8.51 mA/cm2/2.39 A/mgPd) in KOH, (2.98 mA/cm2/0.88 A/mgPd) in H2SO4, and (0.061 mA/cm2/0.0083 A/mgPd) in NaHCO3, in addition to stability after 1000 cycles. This study affirms that porous 3D spherical Pd nanostructures are preferred for the EOR than those of 0D spherical-like and multi-dimensional cube-like nanostructures.

7.
Int J Mol Sci ; 24(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37511591

ABSTRACT

Tailoring the shape of Pd nanocrystals is one of the main ways to enhance catalytic activity; however, the effect of shapes and electrolyte pH on carbon monoxide oxidation (COOxid) is not highlighted enough. This article presents the controlled fabrication of Pd nanocrystals in different morphologies, including Pd nanosponge via the ice-cooling reduction of the Pd precursor using NaBH4 solution and Pd nanocube via ascorbic acid reduction at 25 °C. Both Pd nanosponge and Pd nanocube are self-standing and have a high surface area, uniform distribution, and clean surface. The electrocatalytic CO oxidation activity and durability of the Pd nanocube were significantly superior to those of Pd nanosponge and commercial Pd/C in only acidic (H2SO4) medium and the best among the three media, due to the multiple adsorption active sites, uniform distribution, and high surface area of the nanocube structure. However, Pd nanosponge had enhanced COOxid activity and stability in both alkaline (KOH) and neutral (NaHCO3) electrolytes than Pd nanocube and Pd/C, attributable to its low Pd-Pd interatomic distance and cleaner surface. The self-standing Pd nanosponge and Pd nanocube were more active than Pd/C in all electrolytes. Mainly, the COOxid current density of Pd nanocube in H2SO4 (5.92 mA/cm2) was nearly 3.6 times that in KOH (1.63 mA/cm2) and 10.3 times that in NaHCO3 (0.578 mA/cm2), owing to the greater charge mobility and better electrolyte-electrode interaction, as evidenced by electrochemical impedance spectroscopy (EIS) analysis. Notably, this study confirmed that acidic electrolytes and Pd nanocube are highly preferred for promoting COOxid and may open new avenues for precluding CO poisoning in alcohol-based fuel cells.


Subject(s)
Metal Nanoparticles , Nanostructures , Palladium/chemistry , Metal Nanoparticles/chemistry , Catalysis , Electrolytes/chemistry , Ethanol/chemistry , Nanostructures/chemistry , Hydrogen-Ion Concentration
8.
Ultrason Sonochem ; 98: 106494, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356216

ABSTRACT

The tailored design of tri-metallic Pt-based porous nanodendrites (PNDs) is crucial for green energy production technologies, ascribed to their fancy features, great surface areas, accessible active sites, and stability against aggregation. However, their aqueous-phase one-step synthesis at room temperature remains a daunting challenge. Herein, we present a facile, green, and template-free approach for the one-step synthesis of PtPdCu PNDs by ultrasonication of an aqueous solution of metal salts and Pluronic F127 at 25 ℃, based on natural isolation among nucleation and growth step driven by the disparate reduction kinetics of the metals and acoustic cavitation mechanism of ultrasonic waves. The resultant PtPdCu PNDs formed in a spatial nanodendritic shape with a dense array of branches, open corners, interconnected pores, high surface area (46.9 m2/g), and high Cu content (21 %). The methanol oxidation reaction (MOR) mass activity of PtPdCu PNDs (3.66 mA/µgPt) is 1.45, 2.73, and 2.83 times higher than those of PtPd PNDs, PtCu PNDs, and commercial Pt/C, respectively based on equivalent Pt mass, which is superior to previous PtPdCu catalysts reported elsewhere, besides a superior durability and CO-poisoning tolerance. This study may pave the way for the controlled fabrication of ternary Pt-based PNDs for various electrocatalytic applications.

9.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36499359

ABSTRACT

Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.


Subject(s)
Medicine , Nanostructures , Electrolytes , Oxidation-Reduction , Positron-Emission Tomography
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499453

ABSTRACT

Photocatalytic green hydrogen (H2) production through water electrolysis is deemed as green, efficient, and renewable fuel or energy carrier due to its great energy density and zero greenhouse emissions. However, developing efficient and low-cost noble-metal-free photocatalysts remains one of the daunting challenges in low-cost H2 production. Porous graphitic carbon nitride (gCN) nanostructures have drawn broad multidisciplinary attention as metal-free photocatalysts in the arena of H2 production and other environmental remediation. This is due to their impressive catalytic/photocatalytic properties (i.e., high surface area, narrow bandgap, and visible light absorption), unique physicochemical durability, tunable electronic properties, and feasibility to synthesize in high yield from inexpensive and earth-abundant resources. The physicochemical and photocatalytic properties of porous gCNs can be easily optimized via the integration of earth-abundant heteroatoms. Although there are various reviews on porous gCN-based photocatalysts for various applications, to the best of our knowledge, there are no reviews on heteroatom-doped porous gCN nanostructures for the photocatalytic H2 evolution reaction (HER). It is essential to provide timely updates in this research area to highlight the research related to fabrication of novel gCNs for large-scale applications and address the current barriers in this field. This review emphasizes a panorama of recent advances in the rational design of heteroatom (i.e., P, O, S, N, and B)-doped porous gCN nanostructures including mono, binary, and ternary dopants for photocatalytic HERs and their optimized parameters. This is in addition to H2 energy storage, non-metal configuration, HER fundamental, mechanism, and calculations. This review is expected to inspire a new research entryway to the fabrication of porous gCN-based photocatalysts with ameliorated activity and durability for practical H2 production.


Subject(s)
Nanostructures , Porosity , Metals , Hydrogen
11.
Nanoscale Adv ; 4(23): 5044-5055, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36504739

ABSTRACT

Metal nanocrystal ornamented metal-organic frameworks (MOFs) are of particular interest in multidisciplinary applications; however, their electrocatalytic CO oxidation performance over wide pH ranges is not yet reported. Herein, Ni-MOF-derived hierarchical porous carbon nanosheets (Ni-MOF/PC) with abundant Ni-N x sites decorated with Pd nanocrystals (Pd/Ni-MOF/PC) were synthesized by microwave-irradiation (MW-I) followed by annealing at 900 °C and subsequent etching of Ni-MOF/C prior to Pd deposition. The fabrication mechanism comprises the generation of self-reduced reducing gases from triethylamine during the annealing and selective chemical etching of Ni, thereby facilitating the reduction of Ni-anchored MOF and Pd nanocrystal deposition with the aid of ethylene glycol and MW-I to yield Pd/Ni-N x enriched MOF/PC. The synthetic strategies endear the Pd/Ni-MOF/PC with unique physicochemical merits: abundant defects, interconnected pores, high electrical conductivity, high surface area, Ni-deficient but more active sites for Pd/Ni-N x in porous carbon nanosheets, and synergism. These merits endowed the CO oxidation activity and stability on Pd/Ni-MOF/PC substantially than those of Pd/Ni-MOF/C and Pd/C catalysts in wide pH conditions (i.e., KOH, HClO4, and NaHCO3). The CO oxidation activity study reveals the utilization of MOF/PC with metal nanocrystals (Pd/Ni) in CO oxidation catalysis.

12.
Nanomaterials (Basel) ; 12(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014689

ABSTRACT

Li-ion batteries (LIBs) and Na-ion batteries (SIBs) are deemed green and efficient electrochemical energy storage and generation devices; meanwhile, acquiring a competent anode remains a serious challenge. Herein, the density-functional theory (DFT) was employed to investigate the performance of V4C3 MXene as an anode for LIBs and SIBs. The results predict the outstanding electrical conductivity when Li/Na is loaded on V4C3. Both Li2xV4C3 and Na2xV4C3 (x = 0.125, 0.5, 1, 1.5, and 2) showed expected low-average open-circuit voltages of 0.38 V and 0.14 V, respectively, along with a good Li/Na storage capacity of (223 mAhg-1) and a good cycling performance. Furthermore, there was a low diffusion barrier of 0.048 eV for Li0.0625V4C3 and 0.023 eV for Na0.0625V4C3, implying the prompt intercalation/extraction of Li/Na. Based on the findings of the current study, V4C3-based materials may be utilized as an anode for Li/Na-ion batteries in future applications.

13.
ACS Appl Mater Interfaces ; 14(36): 40749-40760, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36037411

ABSTRACT

Rational design of metal single-site embedded porous graphitic carbon nitride (P-g-C3N4) nanostructures exploiting maximum atom utilization is warranted to enhance the thermal CO oxidation (COOx) reaction. Herein, a facile, green, one-pot, and template-free approach is developed to fabricate the hierarchical porous P-g-C3N4-crumpled ultrathin nanosheets atomically doped with copper single atoms (Cu-P-g-C3N4). Mechanistically, the quick protonation of melamine and pyridine under acidic conditions induces deamination to form melem, which is polycondensed under heating. The interconnected pores, high surface area (240 m2g-1), and maximized exposed isolated Cu atomic active sites (1.8 wt %) coordinated with nitrogen atom P-g-C3N4 are the salient features of Cu- P-g-C3N4 that endowed complete conversion to CO2 at 184 °C. In contrast, P-g-C3N4 only converted 3.8% of CO even at 350 °C, implying the electronic effect of Cu single atoms. The abundant Cu-nitrogen moieties can drastically weaken the binding affinity of the CO-oxidation (COOx) intermediates and products, thus accelerating the reaction kinetics at a low temperature. This study may promote the fabrication of P-g-C3N4 doped with various single atoms for the oxidation of CO.

14.
Langmuir ; 38(36): 11109-11120, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36040806

ABSTRACT

Rational synthesis of Co-ZIF-67 metal-organic framework (MOF)-derived carbon-supported metal nanoparticles is essential for various energy and environmental applications; however, their catalytic activity toward carbon monoxide (CO) oxidation in various electrolytes is not yet emphasized. Co-ZIF-67-derived hierarchical porous carbon nanosheet-supported Pd nanocrystals (Pd/ZIF-67/C) were prepared using a simple microwave-irradiation approach followed by carbonization and etching. Mechanistically, during microwave irradiation, triethyleneamine provides abundant reducing gases that promote the formation of Pd nanoparticles/Co-Nx in porous carbon nanosheets with the assistance of ethylene glycol and also form a multimodal pore size. The electrocatalytic CO oxidation activity and stability of Pd/ZIF-67/C outperformed those of commercial Pd/C and Pt/C catalysts by (4.2 and 4.4, 4.0 and 2.7, 3.59 and 2.7) times in 0.1 M HClO4, 0.1 M KOH, and 0.1 M NaHCO3, respectively, due to the catalytic properties of Pd besides the conductivity of Co-Nx active sites and delicate porous structures of ZIF-67. Notably, using Pd/ZIF-67/C results in a higher CO oxidation activity than Pd/C and Pt/C. This study may pave the way for using MOF-supported multi-metallic nanoparticles for CO oxidation electrocatalysis.

15.
Nanomaterials (Basel) ; 12(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35889603

ABSTRACT

The continual rise of the CO2 concentration in the Earth's atmosphere is the foremost reason for environmental concerns such as global warming, ocean acidification, rising sea levels, and the extinction of various species. The electrochemical CO2 reduction (CO2RR) is a promising green and efficient approach for converting CO2 to high-value-added products such as alcohols, acids, and chemicals. Developing efficient and low-cost electrocatalysts is the main barrier to scaling up CO2RR for large-scale applications. Heteroatom-doped porous carbon-based (HA-PCs) catalysts are deemed as green, efficient, low-cost, and durable electrocatalysts for the CO2RR due to their great physiochemical and catalytic merits (i.e., great surface area, electrical conductivity, rich electrical density, active sites, inferior H2 evolution activity, tailorable structures, and chemical-physical-thermal stability). They are also easily synthesized in a high yield from inexpensive and earth-abundant resources that meet sustainability and large-scale requirements. This review emphasizes the rational synthesis of HA-PCs for the CO2RR rooting from the engineering methods of HA-PCs to the effect of mono, binary, and ternary dopants (i.e., N, S, F, or B) on the CO2RR activity and durability. The effect of CO2 on the environment and human health, in addition to the recent advances in CO2RR fundamental pathways and mechanisms, are also discussed. Finally, the evolving challenges and future perspectives on the development of heteroatom-doped porous carbon-based nanocatalysts for the CO2RR are underlined.

16.
Nanoscale ; 14(30): 10717-10737, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35861592

ABSTRACT

Porous spinel-type transition metal oxide (PS-TMO) nanocatalysts comprising two kinds of metal (denoted as AxB3-xO4, where A, B = Co, Ni, Zn, Mn, Fe, V, Sm, Li, and Zn) have emerged as promising electrocatalysts for oxygen reduction reactions (ORRs) in energy conversion and storage systems (ECSS). This is due to the unique catalytic merits of PS-TMOs (such as p-type conductivity, optical transparency, semiconductivity, multiple valence states of their oxides, and rich active sites) and porous morphologies with great surface area, low density, abundant transportation paths for intermediate species, maximized atom utilization and quick charge mobility. In addition, PS-TMOs nanocatalysts are easily prepared in high yield from Earth-abundant and inexpensive metal precursors that meet sustainability requirements and practical applications. Owing to the continued developments in the rational synthesis of PS-TMOs nanocatalysts for ORRs, it is utterly imperative to provide timely updates and highlight new advances in this research area. This review emphasizes recent research advances in engineering the morphologies and compositions of PS-TMOs nanocatalysts in addition to their mechanisms, to decipher their structure-activity relationships. Also, the ORR mechanisms and fundamentals are discussed, along with the current barriers and future outlook for developing the next generation of PS-TMOs nanocatalysts for large-scale ECSS.

17.
ACS Appl Mater Interfaces ; 14(3): 3919-3929, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35014264

ABSTRACT

The design of alternative earth-abundant van der Waals (vdW) nanoheterostructures for bifunctional oxygen evolution/reduction (OER/ORR) electrocatalysis is of paramount importance to fabricate energy-related devices. Herein, we report a simple metal-organic framework (MOF)-derived synthetic strategy to fabricate low-dimensional (LD) nanohybrids formed by zero-dimensional (0D) ZrO2 nanoparticles (NPs) and heteroatom-doped two-dimensional (2D) carbon nanostructures. The 2D platforms controlled the electronic structures of interfacial Zr atoms, thus producing optimized electron polarization for boron and nitrogen-doped carbon (BCN)/ZrO2 nanohybrids. X-ray photoelectron spectroscopy (XPS) and theoretical studies revealed the key role of the synergistic couple effect of boron (B) and nitrogen (N) in interfacial electronic polarization. The BCN/ZrO2 nanohybrid showed excellent bifunctional electrocatalytic activity, delivering an overpotential (η10) of 301 mV to reach a current density of 10 mA-cm-2 for the OER process and a half-wave potential (E1/2) of 0.85 V vs reversible hydrogen electrode (RHE) for the ORR process, which are comparable to the state-of-the-art LD nanohybrids. Furthermore, BCN/ZrO2 also showed competitive performances for water-splitting and zinc-air battery devices. This work establishes a new route to fabricate highly efficient multifunctional electrocatalysts by tuning the electronic polarization properties of 0D-2D electrochemical interfaces.

18.
Environ Res ; 208: 112685, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34999024

ABSTRACT

Graphene-based nanomaterials with remarkable properties, such as good biocompatibility, strong mechanical strength, and outstanding electrical conductivity, have dramatically shown excellent potential in various applications. Increasing surface area and porosity percentage, improvement of adsorption capacities, reduction of adsorption energy barrier, and also prevention of agglomeration of graphene layers are the main advantages of functionalized graphene nanocomposites. On the other hand, Cerium nanostructures with remarkable properties have received a great deal of attention in a wide range of fields; however, in some cases low conductivity limits their application in different applications. Therefore, the combination of cerium structures and graphene networks has been widely invesitaged to improve properties of the composite. In order to have a comprehensive information of these nanonetworks, this research reviews the recent developments in cerium functionalized graphene derivatives (graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dot (GQD) and their industrial applications. The applications of functionalized graphene derivatives have also been successfully summarized. This systematic review study of graphene networks decorated with different structure of Cerium have potential to pave the way for scientific research not only in field of material science but also in fluorescent sensing, electrochemical sensing, supercapacitors, and catalyst as a new candidate.


Subject(s)
Cerium , Graphite , Nanocomposites , Nanostructures , Quantum Dots , Electric Conductivity , Graphite/chemistry , Nanocomposites/chemistry , Nanostructures/chemistry
20.
ACS Nano ; 15(9): 13924-13942, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34498859

ABSTRACT

Capacitive deionization (CDI) is an energy-efficient desalination technique. However, the maximum desalination capacity of conventional carbon-based CDI systems is approximately 20 mg g-1, which is too low for practical applications. Therefore, the focus of research on CDI has shifted to the development of faradic electrochemical deionization systems using electrodes based on faradic materials which have a significantly higher ion-storage capacity than carbon-based electrodes. In addition to the common symmetrical CDI system, there has also been extensive research on innovative systems to maximize the performance of faradic electrode materials. Research has focused primarily on faradic reactions and faradic electrode materials. However, the correlation between faradic electrode materials and the various electrochemical deionization system architectures, i.e., hybrid capacitive deionization, rocking-chair capacitive deionization, and dual-ion intercalation electrochemical desalination, remains relatively unexplored. This has inhibited the design of specific faradic electrode materials based on the characteristics of individual faradic electrochemical desalination systems. In this review, we have characterized faradic electrode materials based on both their material category and the electrochemical desalination system in which they were utilized. We expect that the detailed analysis of the properties, advantages, and challenges of the individual systems will establish a fundamental correlation between CDI systems and electrode materials that will facilitate future developments in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...