Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446029

ABSTRACT

Crown rot, caused by Phytophthora cactorum, is a devastating disease of strawberry. While most commercial octoploid strawberry cultivars (Fragaria × ananassa Duch) are generally susceptible, the diploid species Fragaria vesca is a potential source of resistance genes to P. cactorum. We previously reported several F. vesca genotypes with varying degrees of resistance to P. cactorum. To gain insights into the strawberry defence mechanisms, comparative transcriptome profiles of two resistant genotypes (NCGR1603 and Bukammen) and a susceptible genotype (NCGR1218) of F. vesca were analysed by RNA-Seq after wounding and subsequent inoculation with P. cactorum. Differential gene expression analysis identified several defence-related genes that are highly expressed in the resistant genotypes relative to the susceptible genotype in response to P. cactorum after wounding. These included putative disease resistance (R) genes encoding receptor-like proteins, receptor-like kinases, nucleotide-binding sites, leucine-rich repeat proteins, RPW8-type disease resistance proteins, and 'pathogenesis-related protein 1'. Seven of these R-genes were expressed only in the resistant genotypes and not in the susceptible genotype, and these appeared to be present only in the genomes of the resistant genotypes, as confirmed by PCR analysis. We previously reported a single major gene locus RPc-1 (Resistance to Phytophthora cactorum 1) in F. vesca that contributed resistance to P. cactorum. Here, we report that 4-5% of the genes (35-38 of ca 800 genes) in the RPc-1 locus are differentially expressed in the resistant genotypes compared to the susceptible genotype after inoculation with P. cactorum. In particular, we identified three defence-related genes encoding wall-associated receptor-like kinase 3, receptor-like protein 12, and non-specific lipid-transfer protein 1-like that were highly expressed in the resistant genotypes compared to the susceptible one. The present study reports several novel candidate disease resistance genes that warrant further investigation for their role in plant defence against P. cactorum.


Subject(s)
Fragaria , Phytophthora , Transcriptome , Fragaria/genetics , Phytophthora/genetics , Disease Resistance/genetics , Gene Expression Profiling
2.
Phytopathology ; 112(2): 414-421, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34080915

ABSTRACT

Until recently, genotypes of Phytophthora infestans were regionally distributed in Europe, with populations in western Europe being dominated by clonal lineages and those in northern Europe being genetically diverse because of frequent sexual reproduction. However, since 2013 a new clonal lineage (EU_41_A2) has successfully established itself and expanded in the sexually recombining P. infestans populations of northern Europe. The objective of this study was to study phenotypic traits of the new clonal lineage of P. infestans, which may explain its successful establishment and expansion within sexually recombining populations. Fungicide sensitivity, aggressiveness, and virulence profiles of isolates of EU_41_A2 were analyzed and compared with those of the local sexual populations from Denmark, Norway, and Estonia. None of the phenotypic data obtained from the isolates collected from Denmark, Estonia, and Norway independently explained the invasive success of EU_41_A2 within sexual Nordic populations. Therefore, we hypothesize that the expansion of this new genotype could result from a combination of fitness traits and more favorable environmental conditions that have emerged in response to climate change.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Genotype , Phenotype , Phytophthora infestans/genetics , Plant Diseases
3.
Plant Dis ; 89(2): 198-202, 2005 Feb.
Article in English | MEDLINE | ID: mdl-30795224

ABSTRACT

Estimates of ascospore maturity generated by a model developed previously in New Hampshire, United States, were compared with the cumulative release of ascospores in southern Norway as monitored by volumetric spore traps at one site for 12 years, and at two additional sites for 2 years. In locations and years with frequent rain events, model-estimated ascospore maturity closely approximated observed ascospore release. However, in years with protracted dry periods of 1 to 3 weeks with no or little rain, not only was spore release delayed, but release continued to lag behind predicted maturity even after several rain events subsequent to the dry interval. By halting degree-day (base = 0°C) accumulation if 7 consecutive days without rain occurred, accuracy of the model during "dry" years was greatly improved, without substantially affecting accuracy in "wet" seasons. With minimal additional effort on the part of the user, this simple modification increases the accuracy of model-derived estimates of ascospore maturity when lack of rain slows ascospore maturation.

4.
Mycol Res ; 108(Pt 3): 317-24, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15185982

ABSTRACT

Analysis of 44 isolates of Phytophthora cactorum, isolated from strawberry and other hosts, by AFLP showed that the crown rot pathotype is different from leather rot isolates and from P. cactorum isolated from other hosts. 16 of 23 crown rot isolates, including isolates from Europe, Japan, Australia, and New Zealand, were identical in an analysis based on 96 polymorphic bands from seven primer combinations. Leather rot isolates of strawberry could not be distinguished from isolates from other hosts. The pathogenicity test of all 44 isolates on strawberry plants mostly gave unambiguous results, except for three American isolates, which seemed to have reduced aggressiveness compared to the crown rot isolates. These isolates also differed in the AFLP analysis. Comparing information on the origin of the isolates with results from the pathogenicity test, showed that isolates from strawberry fruits or petioles could be either leather rot or crown rot pathotypes. None of the isolates from hosts other than strawberry caused crown rot symptoms in strawberry.


Subject(s)
Fragaria/microbiology , Genetic Variation , Phytophthora/pathogenicity , Plant Diseases/microbiology , DNA, Fungal/analysis , Phytophthora/classification , Phytophthora/genetics , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...