Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 924: 171722, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38490423

ABSTRACT

In environmental risk assessment of substances, the 14-day growth inhibition test following OECD test guideline 239 is employed to assess toxicity in the macrophyte Myriophyllum spicatum. Currently, this test evaluates physiological parameters and does not allow the identification of the mode of action (MoA) by which adverse effects are induced. However, for an improved ecotoxicity assessment of substances, knowledge about their ecotoxic MoA in non-target organisms is required. It has previously been suggested that the identification of gene expression changes can contribute to MoA identification. Therefore, we developed a shortened three-day assay for M. spicatum including the transcriptomic assessment of global gene expression changes and applied this assay to two model substances, the herbicide and photosynthesis inhibitor bentazone and the pharmaceutical and HMG-CoA reductase inhibitor atorvastatin. Due to the lack of a reference genome for M. spicatum we performed a de novo transcriptome assembly followed by a functional annotation to use the toxicogenomic results for MoA discrimination. The gene expression changes induced by low effect concentrations of these substances were used to identify differentially expressed genes (DEGs) and impaired biological functions for the respective MoA. We observed both concentration-dependent numbers and differentiated patterns of DEGs for both substances. While bentazone impaired genes involved in the response to reactive oxygen species as well as light response, and also genes involved in developmental processes, atorvastatin exposure led to a differential regulation of genes related to brassinosteroid response as well as potential metabolic shifts between the mevalonate and methyl erythritol 4-phosphate pathway. Based on these responses, we identified biomarker candidates for the assessment of MoA in M. spicatum. Utilizing the shortened assay developed in this study, the investigation of the identified biomarker candidates may contribute to the development of future MoA-specific screening approaches in the ecotoxicological hazard prediction using aquatic non-standard model organisms.


Subject(s)
Benzothiadiazines , Magnoliopsida , Saxifragales , Water Pollutants, Chemical , Atorvastatin/pharmacology , Toxicogenetics , Magnoliopsida/physiology , Biomarkers , Water Pollutants, Chemical/toxicity
2.
Environ Toxicol Pharmacol ; 105: 104348, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38135202

ABSTRACT

In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.


Subject(s)
Alanine/analogs & derivatives , Dioxolanes , Fungicides, Industrial , Perciformes , Triazoles , Animals , Zebrafish/metabolism , Transcriptome , Fungicides, Industrial/toxicity , Proteomics , Gene Expression Profiling , Perciformes/genetics
3.
Ecotoxicol Environ Saf ; 266: 115570, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37844410

ABSTRACT

Although numerous studies imply a correlation between chemical contamination and an impaired immunocompetence of wildlife populations, the assessment of immunomodulatory modes of action is currently not covered in the regulatory requirements for the approval of new substances. This is not least due to the complexity of the immune system and a lack of standardised methods and validated biomarkers. To tackle this issue, in this study, the transcriptomic profiles of zebrafish embryos were analysed in response to the immunosuppressive compound clobetasol propionate, a synthetic glucocorticoid, and/or the immunostimulatory compound imiquimod (IMQ), a TLR-7 agonist. Using IMQ, known for its potential to induce psoriasis-like effects in mice and human, this study additionally aimed at evaluating the usability of the zebrafish embryo model as an alternative and 3R conform system for the IMQ-induced psoriasis mouse model. Our study substantiates the suitability of previously proposed genes as possible biomarkers for immunotoxicity, such as socs3, nfkbia, anxa1c, fkbp5 and irg1l. Likewise, however, our findings indicate that these genes may be less suitable to distinguish a suppressive from stimulating fashion of action. In contrast, based on a differential regulation in opposite direction in response to both compounds, krt17, rtn4a, and1, smhyc1 and gmpr were identified as potential novel biomarkers with said power to differentiate. Observed IMQ-induced alterations in the expression of genes previously associated with the pathogenesis of psoriasis such as krt17, nfkbia, parp1, pparg, nfil3-6, per2, stat4, klf2, rtn4a, anxa1c and nr1d2 indicate the inducibility of psoriatic effects in the zebrafish embryo. Our work contributes to the establishment of an approach for a 3R-compliant investigation of immunotoxic mechanisms of action in aquatic vertebrates. The validated and newly identified biomarker candidates of specific immunotoxic effects can be used in future studies in the context of environmental hazard assessment of substances or also for human-relevant immunotoxicological questions.


Subject(s)
Glucocorticoids , Psoriasis , Humans , Animals , Mice , Glucocorticoids/toxicity , Glucocorticoids/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Toll-Like Receptor 7/metabolism , Transcriptome , Psoriasis/pathology , Imiquimod/toxicity , Immunosuppression Therapy , Biomarkers/metabolism , Skin/metabolism
4.
Ecotoxicol Environ Saf ; 250: 114514, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36608563

ABSTRACT

Endocrine disruptors (EDs), capable of modulating the sex hormone system of an organism, can exert long-lasting negative effects on reproduction in both humans and the environment. For these reasons, the properties of EDs prevent a substance from being approved for marketing. However, regulatory testing to evaluate endocrine disruption is time-consuming, costly, and animal-intensive. Here, we combined sublethal zebrafish embryo assays with transcriptomics and proteomics for well-characterized endocrine disrupting reference compounds to identify predictive biomarkers for sexual endocrine disruption in this model. Using RNA and protein gene expression fingerprints from two different sublethal exposure concentrations, we identified specific signatures and impaired biological processes induced by ethinylestradiol, tamoxifen, methyltestosterone and flutamide 96 h post fertilization (hpf). Our study promotes vtg1 as well as cyp19a1b, fam20cl, lhb, lpin1, nr1d1, fbp1b, and agxtb as promising biomarker candidates for identifying and differentiating estrogen and androgen receptor agonism and antagonism. Evaluation of these biomarkers for pre-regulatory zebrafish embryo-based bioassays will help identify endocrine disrupting hazards of compounds at the molecular level. Such approaches additionally provide weight-of-evidence for the identification of putative EDs and may contribute significantly to a reduction in animal testing in higher tier studies.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Embryo, Nonmammalian/drug effects , Endocrine Disruptors/toxicity , Endocrine System , Estrogens/metabolism , Gene Expression , Phosphatidate Phosphatase/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/genetics
5.
Environ Sci Technol ; 56(16): 11504-11515, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35926083

ABSTRACT

In the environmental risk assessment of substances, toxicity to aquatic plants is evaluated using, among other methods, the 7 dayLemna sp. growth inhibition test following the OECD TG 221. So far, the test is not applicable for short-term screening of toxicity, nor does it allow evaluation of toxic modes of action (MoA). The latter is also complicated by the lack of knowledge of gene functions in the test species. Using ecotoxicogenomics, we developed a time-shortened 3 day assay inLemna minor which allows discrimination of ecotoxic MoA. By examining the changes in gene expression induced by low effect concentrations of the pharmaceutical atorvastatin and the herbicide bentazon at the transcriptome and proteome levels, we were able to identify candidate biomarkers for the respective MoA. We developed a homology-based functional annotation pipeline for the reference genome ofL. minor, which allowed overrepresentation analysis of the gene ontologies affected by both test compounds. Genes affected by atorvastatin mainly influenced lipid synthesis and metabolism, whereas the bentazon-responsive genes were mainly involved in light response. Our approach is therefore less time-consuming but sensitive and allows assessment of MoA in L. minor. Using this shortened assay, investigation of expression changes of the identified candidate biomarkers may allow the development of MoA-specific screening approaches in the future.


Subject(s)
Araceae , Herbicides , Water Pollutants, Chemical , Araceae/metabolism , Atorvastatin/metabolism , Atorvastatin/pharmacology , Biomarkers , Herbicides/metabolism , Herbicides/toxicity , Toxicogenetics , Water Pollutants, Chemical/metabolism
6.
Ecotoxicol Environ Saf ; 233: 113346, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35228030

ABSTRACT

In the ecotoxicological hazard assessment of chemicals, the detection of immunotoxicity is currently neglected. This is mainly due to the complexity of the immune system and the consequent lack of standardized procedures and markers for the comprehensive assessment of immunotoxic modes of action. In this study, we present a new approach applying transcriptome profiling to an immune challenge with a mixture of pathogen-associated molecular patterns (PAMPs) in zebrafish embryos, analyzing differential gene expression during acute infection with and without prior exposure to the immunosuppressive drug clobetasol propionate (CP). While PAMP injection itself triggered biological processes associated with immune activation, some of these genes were more differentially expressed upon prior exposure to CP than by immune induction alone, whereas others showed weaker or no differential regulation in response to the PAMP stimulus. All of these genes responding differently to PAMP after prior CP exposure showed additivity of PAMP- and CP-induced effects, indicating independent regulatory mechanisms. The transcriptomic profiles suggest that CP impaired innate immune induction by attenuating the response of genes involved in antigen processing, TLR signaling, NF-КB signaling, and complement activation. We propose this approach as a powerful method for detecting gene biomarkers for immunosuppressive modes of action, as it was able to identify alternatively regulated processes and pathways in a sublethal, acute infection zebrafish embryo model. This allowed to define biomarker candidates for immune-mediated effects and to comprehensively characterize immunosuppression. Ultimately, this work contributes to the development of molecular biomarker-based environmental hazard assessment of chemicals in the future.


Subject(s)
Clobetasol , Zebrafish , Animals , Clobetasol/metabolism , Gene Expression Profiling , Immunosuppression Therapy , Transcriptome , Zebrafish/metabolism
7.
Chemosphere ; 291(Pt 1): 132746, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34748799

ABSTRACT

For specific primary modes of action (MoA) in environmental non-target organisms, EU legislation restricts the usage of active substances of pesticides or biocides. Corresponding regulatory hazard assessments are costly, time consuming and require large numbers of non-human animal studies. Currently, predictive toxicology of development compounds relies on their chemical structure and provides little insights into toxicity mechanisms that precede adverse effects. Using the zebrafish embryo model, we characterized transcriptomic responses to a range of sublethal concentrations of six nerve- and muscle-targeting insecticides with different MoA (abamectin, carbaryl, chlorpyrifos, fipronil, imidacloprid & methoxychlor). Our aim was to identify affected biological processes and suitable biomarker candidates for MoA-specific signatures. Abamectin showed the most divergent signature among the tested insecticides, linked to lipid metabolic processes. Differentially expressed genes (DEGs) after imidacloprid exposure were primarily associated with immune system and inflammation. In total, 222 early responsive genes to either MoA were identified, many related to three major processes: (1) cardiac muscle cell development and functioning (tcap, desma, bag3, hspb1, hspb8, flnca, myoz3a, mybpc2b, actc2, tnnt2c), (2) oxygen transport and hypoxic stress (alas2, hbbe1.1, hbbe1.3, hbbe2, hbae3, igfbp1a, hif1al) and (3) neuronal development and plasticity (npas4a, egr1, btg2, ier2a, vgf). The thyroidal function related gene dio3b was upregulated by chlorpyrifos and downregulated by higher abamectin concentrations. Important regulatory genes for cardiac muscle (tcap) and forebrain development (npas4a) were the most frequently ifferentially expressed across all insecticide treatments. We consider the identified gene sets as useful early warning biomarker candidates, i.e. for developmental toxicity targeting heart and brain in aquatic vertebrates. Our findings provide a better understanding about early molecular events in response to the analyzed MoA. Perceptively, this promotes the development for sensitive and informative biomarker-based in vitro assays for toxicological MoA prediction and AOP refinement, without the suffering of adult fish.


Subject(s)
Insecticides , Water Pollutants, Chemical , Adaptor Proteins, Signal Transducing , Animals , Apoptosis Regulatory Proteins , Insecticides/toxicity , Muscles , Toxicogenetics , Water Pollutants, Chemical/toxicity , Zebrafish/genetics , Zebrafish Proteins/genetics
8.
Microorganisms ; 9(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34683472

ABSTRACT

Bile salts such as cholate are steroid compounds from the digestive tracts of vertebrates, which enter the environment upon excretion, e.g., in manure. Environmental bacteria degrade bile salts aerobically via two pathway variants involving intermediates with Δ1,4- or Δ4,6-3-keto-structures of the steroid skeleton. Recent studies indicated that degradation of bile salts via Δ4,6-3-keto intermediates in Sphingobium sp. strain Chol11 proceeds via 9,10-seco cleavage of the steroid skeleton. For further elucidation, the presumptive product of this cleavage, 3,12ß-dihydroxy-9,10-seco-androsta-1,3,5(10),6-tetraene-9,17-dione (DHSATD), was provided to strain Chol11 in a co-culture approach with Pseudomonas stutzeri Chol1 and as purified substrate. Strain Chol11 converted DHSATD to the so far unknown compound 4-methyl-3-deoxy-1,9,12-trihydroxyestra-1,3,5(10)7-tetraene-6,17-dione (MDTETD), presumably in a side reaction involving an unusual ring closure. MDTETD was neither degraded by strains Chol1 and Chol11 nor in enrichment cultures. Functional transcriptome profiling of zebrafish embryos after exposure to MDTETD identified a significant overrepresentation of genes linked to hormone responses. In both pathway variants, steroid degradation intermediates transiently accumulate in supernatants of laboratory cultures. Soil slurry experiments indicated that bacteria using both pathway variants were active and also released their respective intermediates into the environment. This instance could enable the formation of recalcitrant steroid metabolites by interspecies cross-feeding in agricultural soils.

9.
Aquat Toxicol ; 238: 105927, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34340001

ABSTRACT

Active substances of pesticides, biocides or pharmaceuticals can induce adverse side effects in the aquatic ecosystem, necessitating environmental hazard and risk assessment prior to substance registration. The freshwater crustacean Daphnia magna is a model organism for acute and chronic toxicity assessment representing aquatic invertebrates. However, standardized tests involving daphnia are restricted to the endpoints immobility and reproduction and thus provide only limited insights into the underlying modes-of-action. Here, we applied transcriptome profiling to a modified D. magna Acute Immobilization test to analyze and compare gene expression profiles induced by the GABA-gated chloride channel blocker fipronil and the nicotinic acetylcholine receptor (nAChR) agonist imidacloprid. Daphnids were expose to two low effect concentrations of each substance followed by RNA sequencing and functional classification of affected gene ontologies and pathways. For both insecticides, we observed a concentration-dependent increase in the number of differentially expressed genes, whose expression changes were highly significantly positively correlated when comparing both test concentrations. These gene expression fingerprints showed virtually no overlap between the test substances and they related well to previous data of diazepam and carbaryl, two substances targeting similar molecular key events. While, based on our results, fipronil predominantly interfered with molecular functions involved in ATPase-coupled transmembrane transport and transcription regulation, imidacloprid primarily affected oxidase and oxidoreductase activity. These findings provide evidence that systems biology approaches can be utilized to identify and differentiate modes-of-action of chemical stressors in D. magna as an invertebrate aquatic non-target organism. The mechanistic knowledge extracted from such data will in future contribute to the development of Adverse Outcome Pathways (AOPs) for read-across and prediction of population effects.

10.
Sci Total Environ ; 760: 143914, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33333401

ABSTRACT

Endocrine disruption (ED) can trigger far-reaching effects on environmental populations, justifying a refusal of market approval for chemicals with ED properties. For the hazard assessment of ED effects on the thyroid system, regulatory decisions mostly rely on amphibian studies. Here, we used transcriptomics and proteomics for identifying molecular signatures of interference with thyroid hormone signaling preceding physiological effects in zebrafish embryos. For this, we analyzed the thyroid hormone 3,3',5-triiodothyronine (T3) and the thyroid peroxidase inhibitor 6-propyl-2-thiouracil (6-PTU) as model substances for increased and repressed thyroid hormone signaling in a modified zebrafish embryo toxicity test. We identified consistent gene expression fingerprints for both modes-of-action (MoA) at sublethal test concentrations. T3 and 6-PTU both significantly target the expression of genes involved in muscle contraction and functioning in an opposing fashion, allowing for a mechanistic refinement of key event relationships in thyroid-related adverse outcome pathways in fish. Furthermore, our fingerprints identify biomarker candidates for thyroid disruption hazard screening approaches. Perspectively, our findings will promote the AOP-based development of in vitro assays for thyroidal ED assessment, which in the long term will contribute to a reduction of regulatory animal tests.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Biomarkers , Embryo, Nonmammalian , Endocrine Disruptors/toxicity , Thyroid Gland , Toxicogenetics , Water Pollutants, Chemical/toxicity , Zebrafish/genetics
11.
Chemosphere ; 240: 124970, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31726584

ABSTRACT

Measurement of specific biomarkers identified by proteomics provides a potential alternative method for risk assessment, which is required to discriminate between hepatotoxicity and endocrine disruption. In this study, adult zebrafish (Danio rerio) were exposed to the hepatotoxic substance acetaminophen (APAP) for 21 days, in a fish short-term reproduction assay (FSTRA). The molecular changes induced by APAP exposure were studied in liver and gonads by applying a previously developed combined FSTRA and proteomics approach. We observed a significant decrease in egg numbers, an increase in plasma hyaluronic acid, and the presence of single cell necrosis in liver tissue. Furthermore, nine common biomarkers (atp5f1b, etfa, uqcrc2a, cahz, c3a.1, rab11ba, mettl7a, khdrbs1a and si:dkey-108k21.24) for assessing hepatotoxicity were detected in both male and female liver, indicating hepatic damage. In comparison with exposure to fadrozole, an endocrine disrupting chemical (EDC), three potential biomarkers for liver injury, i.e. cahz, c3a.1 and atp5f1b, were differentially expressed. The zebrafish proteome response to fadrozole exposure indicated a significant regulation in estrogen synthesis and perturbed binding of sperm to zona pellucida in the ovary. This study demonstrates that biomarkers identified and quantified by proteomics can serve as additional weight-of-evidence for the discrimination of hepatotoxicity and endocrine disruption, which is necessary for hazard identification in EU legislation and to decide upon the option for risk assessment.


Subject(s)
Biomarkers/analysis , Chemical and Drug Induced Liver Injury/diagnosis , Endocrine Disruptors/toxicity , Environmental Monitoring/methods , Proteomics/methods , Acetaminophen/metabolism , Acetaminophen/toxicity , Animals , Biomarkers/metabolism , Diagnosis, Differential , Fadrozole/toxicity , Female , Gonads/drug effects , Male , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
12.
Sci Rep ; 9(1): 6599, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036921

ABSTRACT

The fish short-term reproduction assay (FSTRA) is a common in vivo screening assay for assessing endocrine effects of chemicals on reproduction in fish. However, the current reliance on measures such as egg number, plasma vitellogenin concentration and morphological changes to determine endocrine effects can lead to false labelling of chemicals with non-endocrine modes- of-action. Here, we integrated quantitative liver and gonad shotgun proteomics into the FSTRA in order to investigate the causal link between an endocrine mode-of-action and adverse effects assigned to the endocrine axis. Therefore, we analyzed the molecular effects of fadrozole-induced aromatase inhibition in zebrafish (Danio rerio). We observed a concentration-dependent decrease in fecundity, a reduction in plasma vitellogenin concentrations and a mild oocyte atresia with oocyte membrane folding in females. Consistent with these apical measures, proteomics revealed a significant dysregulation of proteins involved in steroid hormone secretion and estrogen stimulus in the female liver. In the ovary, the deregulation of estrogen synthesis and binding of sperm to zona pellucida were among the most significantly perturbed pathways. A significant deregulation of proteins targeting the transcriptional activity of estrogen receptor (esr1) was observed in male liver and testis. Our results support that organ- and sex-specific quantitative proteomics represent a promising tool for identifying early gene expression changes preceding chemical-induced adverse outcomes. These data can help to establish consistency in chemical classification and labelling.


Subject(s)
Endocrine System/drug effects , Estrogen Receptor alpha/genetics , Proteomics , Water Pollutants, Chemical/toxicity , Zebrafish Proteins/genetics , Animals , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/toxicity , Estrogens/metabolism , Fadrozole/pharmacology , Fadrozole/toxicity , Female , Gene Expression Regulation, Developmental/drug effects , Gonadal Steroid Hormones/antagonists & inhibitors , Gonadal Steroid Hormones/biosynthesis , Gonads/drug effects , Gonads/metabolism , Liver/drug effects , Liver/metabolism , Male , Reproduction/drug effects , Testis/drug effects , Water Pollutants, Chemical/pharmacology , Zebrafish/genetics , Zebrafish/growth & development
13.
Sci Rep ; 8(1): 2851, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29434270

ABSTRACT

The consumption of bovine milk and meat is considered a risk factor for colon- and breast cancer formation, and milk consumption has also been implicated in an increased risk for developing Multiple Sclerosis (MS). A number of highly related virus-like DNAs have been recently isolated from bovine milk and sera and from a brain sample of a MS patient. As a genetic activity of these Acinetobacter-related bovine milk and meat factors (BMMFs) is unknown in eukaryotes, we analyzed their expression and replication potential in human HEK293TT cells. While all analyzed BMMFs show transcriptional activity, the MS brain isolate MSBI1.176, sharing homology with a transmissible spongiform encephalopathy-associated DNA molecule, is transcribed at highest levels. We show expression of a replication-associated protein (Rep), which is highly conserved among all BMMFs, and serological tests indicate a human anti-Rep immune response. While the cow milk isolate CMI1.252 is replication-competent in HEK293TT cells, replication of MSBI1.176 is complemented by CMI1.252, pointing at an interplay during the establishment of persistence in human cells. Transcriptome profiling upon BMMF expression identified host cellular gene expression changes related to cell cycle progression and cell viability control, indicating potential pathways for a pathogenic involvement of BMMFs.


Subject(s)
DNA, Circular/genetics , DNA, Circular/metabolism , Milk/chemistry , Multiple Sclerosis/genetics , Up-Regulation , Acinetobacter/virology , Animals , Brain Chemistry , Cattle , DNA Replication , DNA, Circular/immunology , DNA, Circular/isolation & purification , DNA, Viral/genetics , DNA, Viral/immunology , DNA, Viral/isolation & purification , DNA, Viral/metabolism , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , Humans , Sequence Analysis, RNA , Sequence Homology, Nucleic Acid
14.
PLoS One ; 13(2): e0192242, 2018.
Article in English | MEDLINE | ID: mdl-29438442

ABSTRACT

For years, GluN3A was solely considered to be a dominant-negative modulator of NMDARs, since its incorporation into receptors alters hallmark features of conventional NMDARs composed of GluN1/GluN2 subunits. Only recently, increasing evidence has accumulated that GluN3A plays a more diversified role. It is considered to be critically involved in the maturation of glutamatergic synapses, and it might act as a molecular brake to prevent premature synaptic strengthening. Its expression pattern supports a putative role during neural development, since GluN3A is predominantly expressed in early pre- and postnatal stages. In this study, we used RNA interference to efficiently knock down GluN3A in 46C-derived neural stem cells (NSCs) both at the mRNA and at the protein level. Global gene expression profiling upon GluN3A knockdown revealed significantly altered expression of a multitude of neural genes, including genes encoding small GTPases, retinal proteins, and cytoskeletal proteins, some of which have been previously shown to interact with GluN3A or other iGluR subunits. Canonical pathway enrichment studies point at important roles of GluN3A affecting key cellular pathways involved in cell growth, proliferation, motility, and survival, such as the mTOR pathway. This study for the first time provides insights into transcriptome changes upon the specific knockdown of an NMDAR subunit in NSCs, which may help to identify additional functions and downstream pathways of GluN3A and GluN3A-containing NMDARs.


Subject(s)
Gene Knockdown Techniques , Neural Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Gene Expression Profiling , Mice , Protein Binding , Receptors, N-Methyl-D-Aspartate/metabolism
15.
Cell Death Dis ; 9(2): 70, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358700

ABSTRACT

TAF6δ is a pro-apoptotic splice variant of the RNA polymerase II general transcription factor, TAF6, that can dictate life vs. death decisions in animal cells. TAF6δ stands out from classical pro-apoptotic proteins because it is encoded by a gene that is essential at the cellular level, and because it functions as a component of the basal transcription machinery. TAF6δ has been shown to modulate the transcriptome landscape, but it is not known if changes in gene expression trigger apoptosis nor which TAF6δ-regulated genes contribute to cell death. Here we used microarrays to interrogate the genome-wide impact of TAF6δ on transcriptome dynamics at temporal resolution. The results revealed changes in pro-apoptotic BH3-only mitochondrial genes that correlate tightly with the onset of cell death. These results prompted us to test and validate a role for the mitochondrial pathway by showing that TAF6δ expression causes cytochrome c release into the cytoplasm. To further dissect the mechanism by which TAF6δ drives apoptosis, we pinpointed BIM and NOXA as candidate effectors. siRNA experiments showed that both BIM and NOXA contribute to TAF6δ-dependent cell death. Our results identify mitochondrial effectors of TAF6δ-driven apoptosis, thereby providing the first of mechanistic framework underlying the atypical TAF6δ apoptotic pathway's capacity to intersect with the classically defined apoptotic machinery to trigger cell death.


Subject(s)
Apoptosis , Bcl-2-Like Protein 11/metabolism , Mitochondria/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , TATA-Binding Protein Associated Factors/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Cytochromes c/metabolism , Gene Ontology , Humans , Mitochondria/drug effects , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Time Factors , Transcriptional Activation/drug effects , Transcriptional Activation/genetics , Transcriptome/genetics , bcl-X Protein/metabolism
16.
Genomics Proteomics Bioinformatics ; 15(5): 313-323, 2017 10.
Article in English | MEDLINE | ID: mdl-29037489

ABSTRACT

The transactivating response element (TAR) structure of the nascent HIV-1 transcript is critically involved in the recruitment of inactive positive transcription elongation factor b (P-TEFb) to the promoter proximal paused RNA polymerase II. The viral transactivator Tat is responsible for subsequent P-TEFb activation in order to start efficient viral transcription elongation. In the absence of the viral transactivator of transcription (Tat), e.g., during latency or in early stages of HIV transcription, TAR mediates an interaction of P-TEFb with its inhibitor hexamethylene bis-acetamide-inducible protein 1 (HEXIM1), keeping P-TEFb in its inactive form. In this study, we address the function of HIV-1 TAR in the absence of Tat by analyzing consequences of HIV-1 TAR overexpression on host cellular gene expression. An RNA chimera consisting of Epstein-Barr virus-expressed RNA 2 (EBER2) and HIV-1 TAR was developed to assure robust overexpression of TAR in HEK293 cells. The overexpression results in differential expression of more than 800 human genes. A significant proportion of these genes is involved in the suppression of cellular immune responses, including a significant set of 7SK-responsive P-TEFb target genes. Our findings identify a novel role for HIV-1 TAR in the absence of Tat, involving the interference with host cellular immune responses by targeting 7SK RNA-mediated gene expression and P-TEFb inactivation.


Subject(s)
Gene Expression Regulation , HIV Long Terminal Repeat/genetics , HIV-1/genetics , Immunity, Cellular/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA, Long Noncoding/metabolism , tat Gene Products, Human Immunodeficiency Virus/deficiency , Base Sequence , Cyclin-Dependent Kinase 9/metabolism , HEK293 Cells , HMGA Proteins/metabolism , Humans , Models, Biological , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Signal Transduction/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
17.
Genome Announc ; 5(17)2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28450523

ABSTRACT

Epidemiological data indicate a potential relationship between milk and dairy product consumption and the incidence of breast cancer, as well as neurodegenerative diseases. We report the isolation of two novel circular DNA molecules isolated from commercially available milk.

19.
Sci Rep ; 6: 34920, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725726

ABSTRACT

Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction.


Subject(s)
HIV-1/genetics , HMGA1a Protein/metabolism , Kruppel-Like Transcription Factors/metabolism , Neuroglia/virology , Repressor Proteins/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics , Cells, Cultured , Humans
20.
Biomolecules ; 5(2): 943-57, 2015.
Article in English | MEDLINE | ID: mdl-26117853

ABSTRACT

The high mobility group protein A1 (HMGA1) is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.


Subject(s)
HMGA Proteins/metabolism , RNA, Small Nuclear/metabolism , RNA, Viral/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chromatin Assembly and Disassembly , HMGA Proteins/chemistry , HMGA Proteins/genetics , Humans , Molecular Sequence Data , Protein Binding , RNA, Small Nuclear/chemistry , RNA, Viral/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...