Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 149(23): 234707, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30579301

ABSTRACT

We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft X-ray pulses and discuss the prospects of femtosecond X-ray pump X-ray spectroscopy probe, as well as X-ray two-pulse correlation measurements for fundamental investigations of chemical reactions via selective X-ray excitation.

2.
Nat Commun ; 9(1): 1917, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765052

ABSTRACT

The dynamics of liquid water feature a variety of time scales, ranging from extremely fast ballistic-like thermal motion, to slower molecular diffusion and hydrogen-bond rearrangements. Here, we utilize coherent X-ray pulses to investigate the sub-100 fs equilibrium dynamics of water from ambient conditions down to supercooled temperatures. This novel approach utilizes the inherent capability of X-ray speckle visibility spectroscopy to measure equilibrium intermolecular dynamics with lengthscale selectivity, by measuring oxygen motion in momentum space. The observed decay of the speckle contrast at the first diffraction peak, which reflects tetrahedral coordination, is attributed to motion on a molecular scale within the first 120 fs. Through comparison with molecular dynamics simulations, we conclude that the slowing down upon cooling from 328 K down to 253 K is not due to simple thermal ballistic-like motion, but that cage effects play an important role even on timescales over 25 fs due to hydrogen-bonding.

3.
J Phys Chem Lett ; 8(1): 285-290, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27983864

ABSTRACT

Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.

4.
J Phys Chem Lett ; 7(8): 1466-70, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27045045

ABSTRACT

Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)-carbonate/hydroxide is also reported. This study highlights the importance of using oxidized copper precursors for constructing selective CO2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.

5.
J Chem Phys ; 144(1): 014702, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26747813

ABSTRACT

We investigated the adsorption and reaction of pyridine on flat Pt(111) and stepped Pt(355) surfaces via high-resolution in situ x-ray photoelectron spectroscopy. The surfaces were exposed to pyridine at temperatures between 112 and 300 K while simultaneously recording XP spectra. Subsequently, the crystals were annealed and the temperature dependencies of the N 1s and C 1s core levels were studied again in a continuous and quantitative way. Various surface species were found, namely, physisorbed, flat-lying and end-on pyridine, α-pyridyl species on the terraces and on the steps and several unidentified high temperature species. We were able to show an influence of the steps of Pt(355) by pre-adsorbing silver next to the step, which selectively suppresses the step adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...