Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 32(17): 4814-4828, 2023 09.
Article in English | MEDLINE | ID: mdl-37454286

ABSTRACT

The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef-building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes of Acropora cervicornis and A. palmata corals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent in A. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Genotype , Caribbean Region , Adaptation, Physiological , Epigenesis, Genetic , Coral Reefs
2.
Ecol Evol ; 12(8): e9226, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36052296

ABSTRACT

Age information is often non-existent for most shark populations due to a lack of measurable physiological and morphological traits that can be used to estimate age. Recently, epigenetic clocks have been found to accurately estimate age for mammals, birds, and fish. However, since these clocks rely, among other things, on the availability of reference genomes, their application is hampered in non-traditional model organisms lacking such molecular resources. The technique known as Methyl-Sensitive Amplified Polymorphism (MSAP) has emerged as a valid alternative for studying DNA methylation biomarkers when reference genome information is missing, and large numbers of samples need to be processed. Accordingly, the MSAP technique was used in the present study to characterize global DNA methylation patterns in lemon sharks from three different age groups (juveniles, subadults, and adults). The obtained results reveal that, while MSAP analyses lack enough resolution as a standalone approach to infer age in these organisms, the global DNA methylation patterns observed using this technique displayed significant differences between age groups. Overall, these results confer that DNA methylation does change with age in sharks like what has been seen for other vertebrates and that MSAP could be useful as part of an epigenetics pipeline to infer the broad range of ages found in large samples sizes.

3.
Mol Ecol ; 31(2): 588-602, 2022 01.
Article in English | MEDLINE | ID: mdl-34689363

ABSTRACT

Algal symbiont shuffling in favour of more thermotolerant species has been shown to enhance coral resistance to heat-stress. Yet, the mechanistic underpinnings and long-term implications of these changes are poorly understood. This work studied the modifications in coral DNA methylation, an epigenetic mechanism involved in coral acclimatization, in response to symbiont manipulation and subsequent heat stress exposure. Symbiont composition was manipulated in the great star coral Montastraea cavernosa through controlled thermal bleaching and recovery, producing paired ramets of three genets dominated by either their native symbionts (genus Cladocopium) or the thermotolerant species (Durusdinium trenchi). Single-base genome-wide analyses showed significant modifications in DNA methylation concentrated in intergenic regions, introns and transposable elements. Remarkably, DNA methylation changes in response to heat stress were dependent on the dominant symbiont, with twice as many differentially methylated regions found in heat-stressed corals hosting different symbionts (Cladocopium vs. D. trenchii) compared to all other comparisons. Interestingly, while differential gene body methylation was not correlated with gene expression, an enrichment in differentially methylated regions was evident in repetitive genome regions. Overall, these results suggest that changes in algal symbionts favouring heat tolerant associations are accompanied by changes in DNA methylation in the coral host. The implications of these results for coral adaptation, along with future avenues of research based on current knowledge gaps, are discussed in the present work.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Coral Reefs , DNA Methylation , Dinoflagellida/genetics , Genome-Wide Association Study , Hot Temperature , Symbiosis/genetics
4.
Mol Ecol Resour ; 22(4): 1247-1261, 2022 May.
Article in English | MEDLINE | ID: mdl-34709728

ABSTRACT

There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome-wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base-pair resolution-whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl-CpG binding domain bisulfite sequencing (MBDBS)-using multiple individuals from two reef-building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation in Montipora capitata (11.4%) than the more sensitive Pocillopora acuta (2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross-species comparisons. As genome-wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.


Subject(s)
DNA Methylation , Epigenome , Animals , Bias , CpG Islands/genetics , High-Throughput Nucleotide Sequencing , Invertebrates/genetics , Sequence Analysis, DNA/methods
5.
Nat Struct Mol Biol ; 28(12): 1009-1019, 2021 12.
Article in English | MEDLINE | ID: mdl-34887560

ABSTRACT

NAD metabolism is essential for all forms of life. Compartmental regulation of NAD+ consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD+ consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications.


Subject(s)
Energy Metabolism/physiology , Histones/genetics , Histones/metabolism , NAD/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , DNA Repair/genetics , Eukaryota/metabolism , Humans , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors
6.
Mol Biol Evol ; 38(12): 5309-5327, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34480573

ABSTRACT

The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.


Subject(s)
Methyltransferases , Proteins , Animals , Epigenesis, Genetic , Evolution, Molecular , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Phylogeny , Proteins/genetics
7.
Trends Ecol Evol ; 36(11): 1011-1023, 2021 11.
Article in English | MEDLINE | ID: mdl-34366170

ABSTRACT

The apparent ability of corals to acquire and maintain enhanced stress tolerance through a dose-dependent environmental memory, which may persist for multiple years, has critical implications for coral reef conservation research. Such responses are variable across coral species and environmental stressors, with primed corals exhibiting a modified response to secondary stress exposures. While the mechanisms underlying coral memory responses are poorly understood, they likely involve both the coral host and microbiome. With advances in molecular technologies, it is now possible to investigate potential memory mechanisms in non-model organisms, including transcriptional regulation through epigenetic modifications. We integrate evidence of coral environmental memory and suggest future research directions to evaluate the potential for this process to enhance coral resilience under climate change.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Climate Change , Coral Reefs
8.
Bull Environ Contam Toxicol ; 107(1): 92-99, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33392686

ABSTRACT

Lipids are excellent biomarkers for assessing coral stress, although staghorn coral data (Acropora cervicornis) is lacking. Lipid extraction is the most critical step in lipidomic assessments, usually performed using carcinogenic solvents. Efficient alternative using less toxic methods, such as the BUME method using butanol and methanol as extraction solvents, have not been applied to coral lipidomics evaluations. Thus, we aimed to develop a lipidomic approach to identify important coral health biomarkers by comparing different solvent mixtures in staghorn corals. Total lipid extraction was equivalent for both tested methods, but due to its efficiency in extracting polar lipids, the BUME method was chosen. It was then applied to different coral masses (0.33-1.00 g), resulting in non-significant differences concerning number of lipid classes and compounds. Therefore, this method can be successfully applied to coral assessments in a climate change context, with the added benefit of low sample masses, lessening coral sampling impacts.


Subject(s)
Anthozoa , Lipidomics , Animals , Chloroform , Lipids , Methanol
9.
J Biol Chem ; 294(44): 16364-16373, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31527083

ABSTRACT

Protamines are small, highly-specialized, arginine-rich, and intrinsically-disordered chromosomal proteins that replace histones during spermiogenesis in many organisms. Previous evidence supports the notion that, in the animal kingdom, these proteins have evolved from a primitive replication-independent histone H1 involved in terminal cell differentiation. Nevertheless, a direct connection between the two families of chromatin proteins is missing. Here, we primarily used electron transfer dissociation MS-based analyses, revealing that the protamines in the sperm of the liverwort Marchantia polymorpha result from post-translational cleavage of three precursor H1 histones. Moreover, we show that the mature protamines are further post-translationally modified by di-aminopropanelation, and previous studies have reported that they condense spermatid chromatin through a process consisting of liquid-phase assembly likely involving spinodal decomposition. Taken together, our results reveal that the interesting evolutionary ancestry of protamines begins with histone H1 in both the animal and plant kingdoms.


Subject(s)
Marchantia/metabolism , Protamines/metabolism , Amino Acid Sequence/genetics , Animals , Chromatin/metabolism , Hepatophyta/metabolism , Histones/metabolism , Male , Mass Spectrometry/methods , Protamines/genetics , Protein Processing, Post-Translational/physiology , Spermatids/metabolism , Spermatogenesis/physiology , Spermatozoa/metabolism
10.
Ann Rev Mar Sci ; 11: 335-368, 2019 01 03.
Article in English | MEDLINE | ID: mdl-29958066

ABSTRACT

Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.


Subject(s)
Acclimatization/genetics , Aquatic Organisms/genetics , Climate Change , Epigenesis, Genetic , Animals , Biological Evolution , Ecology , Environmental Pollution
11.
Genes (Basel) ; 9(11)2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30360559

ABSTRACT

Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore littoral communities worldwide. Although the family is composed of more than 200 species belonging to 18 genera, chromosome numbers have been described in only eleven of them. A molecular cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis, and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea, the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric chromosome pairs. None of the periwinkle species showed chromosomal differences between male and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these DNA sequences were conserved among closely related species and differed among less related ones. All signals occupied separated loci on different chromosome pairs without any evidence of co-localization in any of the species.

12.
Ecol Evol ; 8(23): 12193-12207, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30598811

ABSTRACT

Nutrient pollution and thermal stress constitute two of the main drivers of global change in the coastal oceans. While different studies have addressed the physiological effects and ecological consequences of these stressors in corals, the role of acquired modifications in the coral epigenome during acclimatory and adaptive responses remains unknown. The present work aims to address that gap by monitoring two types of epigenetic mechanisms, namely histone modifications and DNA methylation, during a 7-week-long experiment in which staghorn coral fragments (Acropora cervicornis) were exposed to nutrient stress (nitrogen, nitrogen + phosphorus) in the presence of thermal stress. The major conclusion of this experiment can be summarized by two main results: First, coral holobiont responses to the combined effects of nutrient enrichment and thermal stress involve the post-translational phosphorylation of the histone variant H2A.X (involved in responses to DNA damage), as well as nonsignificant modifications in DNA methylation trends. Second, the reduction in H2A.X phosphorylation (and the subsequent potential impairment of DNA repair mechanisms) observed after prolonged coral exposure to nitrogen enrichment and thermal stress is consistent with the symbiont-driven phosphorus limitation previously observed in corals subject to nitrogen enrichment. The alteration of this epigenetic mechanism could help to explain the synergistic effects of nutrient imbalance and thermal stress on coral fitness (i.e., increased bleaching and mortality) while supporting the positive effect of phosphorus addition to improving coral resilience to thermal stress. Overall, this work provides new insights into the role of epigenetic mechanisms during coral responses to global change, discussing future research directions and the potential benefits for improving restoration, management and conservation of coral reef ecosystems worldwide.

13.
Front Physiol ; 8: 490, 2017.
Article in English | MEDLINE | ID: mdl-28848447

ABSTRACT

Bivalve molluscs constitute a ubiquitous taxonomic group playing key functions in virtually all ecosystems, and encompassing critical commercial relevance. Along with a sessile and filter-feeding lifestyle in most cases, these characteristics make bivalves model sentinel organisms routinely used for environmental monitoring studies in aquatic habitats. The study of epigenetic mechanisms linking environmental exposure and specific physiological responses (i.e., environmental epigenetics) stands out as a very innovative monitoring strategy, given the role of epigenetic modifications in acclimatization and adaptation. Furthermore, the heritable nature of many of those modifications constitutes a very promising avenue to explore the applicability of epigenetic conditioning and selection in management and restoration strategies. Chromatin provides a framework for the study of environmental epigenetic responses. Unfortunately, chromatin and epigenetic information are very limited in most non-traditional model organisms and even completely lacking in most environmentally and ecologically relevant organisms. The present work aims to provide a comprehensive and reproducible experimental workflow for the study of bivalve chromatin. First, a series of guidelines for the molecular isolation of genes encoding chromatin-associated proteins is provided, including information on primers suitable for conventional PCR, Rapid Amplification of cDNA Ends (RACE), genome walking and quantitative PCR (qPCR) experiments. This section is followed by the description of methods specifically developed for the analysis of histone and SNBP proteins in different bivalve tissues, including protein extraction, purification, separation and immunodetection. Lastly, information about available antibodies, their specificity and performance is also provided. The tools and protocols described here complement current epigenetic analyses (usually limited to DNA methylation) by incorporating the study of structural elements modulating chromatin dynamics.

14.
Sci Rep ; 7(1): 3795, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28630422

ABSTRACT

The nucleoplasmin family of histone chaperones is identified by a pentamer-forming domain and multiple acidic tracts that mediate histone binding and chaperone activity. Within this family, a novel domain organization was recently discovered that consists of an N-terminal nucleoplasmin-like (NPL) domain and a C-terminal FKBP peptidyl-proline isomerase domain. Saccharomyces cerevisiae Fpr4 is one such protein. Here we report that in addition to its known histone prolyl isomerase activities, the Fpr4 FKBP domain binds to nucleosomes and nucleosome arrays in vitro. This ability is mediated by a collection of basic patches that enable the enzyme to stably associate with linker DNA. The interaction of the Fpr4 FKBP with recombinant chromatin complexes condenses nucleosome arrays independently of its catalytic activity. Based on phylogenetic comparisons we propose that the chromatin binding ability of 'basic' FKBPs is shared amongst related orthologues present in fungi, plants, and insects. Thus, a subclass of FKBP prolyl isomerase enzymes is recruited to linker regions of chromatin.


Subject(s)
Histone Chaperones/chemistry , Nucleosomes/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Tacrolimus Binding Proteins/chemistry , Histone Chaperones/genetics , Histone Chaperones/metabolism , Humans , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Domains , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism
15.
Aquat Toxicol ; 186: 196-204, 2017 May.
Article in English | MEDLINE | ID: mdl-28315825

ABSTRACT

Massive algal proliferations known as Harmful Algal Blooms (HABs) represent one of the most important threats to coastal areas. Among them, the so-called Florida Red Tides (FRTs, caused by blooms of the dinoflagellate Karenia brevis and associated brevetoxins) are particularly detrimental in the southeastern U.S., causing high mortality rates and annual losses in excess of $40 million. The ability of marine organisms to cope with environmental stressors (including those produced during HABs) is influenced by genetic and epigenetic mechanisms, the latter resulting in phenotypic changes caused by heritable modifications in gene expression, without involving changes in the genetic (DNA) sequence. Yet, studies examining cause-effect relationships between environmental stressors, specific epigenetic mechanisms and subsequent responses are still lacking. The present work contributes to increase this knowledge by investigating the effects of Florida Red Tides on two types of mechanisms participating in the epigenetic memory of Eastern oysters: histone variants and DNA methylation. For that purpose, a HAB simulation was conducted in laboratory conditions, exposing oysters to increasing concentrations of K. brevis. The obtained results revealed, for the first time, the existence of H2A.X, H2A.Z and macroH2A genes in this organism, encoding histone variants potentially involved in the maintenance of genome integrity during responses to the genotoxic effect of brevetoxins. Additionally, an increase in H2A.X phosphorylation (γH2A.X, a marker of DNA damage) and a decrease in global DNA methylation were observed as the HAB simulation progressed. Overall, the present work provides a basis to better understand how epigenetic mechanisms participate in responses to environmental stress in marine invertebrates, opening new avenues to incorporate environmental epigenetics approaches into management and conservation programs.


Subject(s)
Crassostrea/genetics , DNA Methylation , Harmful Algal Bloom , Histones/genetics , Animals , Crassostrea/drug effects , DNA Methylation/drug effects , Dinoflagellida/physiology , Feeding Behavior/drug effects , Florida , Gene Expression Regulation/drug effects , Harmful Algal Bloom/drug effects , Histones/metabolism , Marine Toxins/toxicity , Oxocins/toxicity , Phosphorylation/drug effects , Time Factors , Water Pollutants, Chemical/toxicity
16.
Biochem Cell Biol ; 94(5): 480-490, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27617756

ABSTRACT

Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.


Subject(s)
Germinal Center/metabolism , Mytilus/metabolism , Proteins/genetics , Proteins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Electrophoretic Mobility Shift Assay , Gene Expression Profiling , Histones/metabolism , Mutation/genetics , Mytilus/genetics , Phylogeny , Protein Conformation , Proteins/chemistry , Sequence Homology, Nucleic Acid
17.
FEBS Lett ; 590(16): 2629-38, 2016 08.
Article in English | MEDLINE | ID: mdl-27339085

ABSTRACT

Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120 K121 K125 ) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast-to-human changes at these positions render yeast histones amenable to well-established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.


Subject(s)
Evolution, Molecular , Nucleosomes/genetics , Recombinant Fusion Proteins/genetics , Amino Acids/chemistry , Amino Acids/genetics , Chromatin/chemistry , Chromatin/genetics , Genome, Fungal , Histones/chemistry , Histones/genetics , Humans , Nucleosomes/chemistry , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae/genetics
18.
Toxins (Basel) ; 8(6)2016 05 24.
Article in English | MEDLINE | ID: mdl-27231936

ABSTRACT

Okadaic acid (OA) and dinophysistoxins (DTXs) are the main toxins responsible for diarrhetic shellfish poisoning (DSP) intoxications during harmful algal blooms (HABs). Although the genotoxic and cytotoxic responses to OA have been evaluated in vitro, the in vivo effects of these toxins have not yet been fully explored. The present work fills this gap by evaluating the in vivo effects of the exposure to the DSP-toxin-producing dinoflagellate Prorocentrum lima during the simulation of an early HAB episode in the mussel Mytilus galloprovincialis. The obtained results revealed that in vivo exposure to this toxic microalgae induced early genotoxicity in hemocytes, as a consequence of oxidative DNA damage. In addition, the DNA damage observed in gill cells seems to be mainly influenced by exposure time and P. lima concentration, similarly to the case of the oxidative damage found in hemocytes exposed in vitro to OA. In both cell types, the absence of DNA damage at low toxin concentrations is consistent with the notion suggesting that this level of toxicity does not disturb the antioxidant balance. Lastly, in vivo exposure to growing P. lima cell densities increased apoptosis but not necrosis, probably due to the presence of a high number of protein apoptosis inhibitors in molluscs. Overall, this work sheds light into the in vivo genotoxic and cytotoxic effects of P. lima. In doing so, it also demonstrates for the first time the potential of the modified (OGG1) comet assay for assessing oxidative DNA damage caused by marine toxins in marine invertebrates.


Subject(s)
DNA Damage , Dinoflagellida , Marine Toxins/toxicity , Mytilus/drug effects , Okadaic Acid/toxicity , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Comet Assay/methods , Dinoflagellida/metabolism , Dose-Response Relationship, Drug , Flow Cytometry , Gills/drug effects , Gills/pathology , Hemocytes/drug effects , Hemocytes/metabolism , Necrosis
19.
Epigenetics ; 11(6): 415-25, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27082816

ABSTRACT

Histone variants play a critical role in chromatin structure and epigenetic regulation. These "deviant" proteins have been historically considered as the evolutionary descendants of ancestral canonical histones, helping specialize the nucleosome structure during eukaryotic evolution. Such view is now challenged by 2 major observations: first, canonical histones present extremely unique features not shared with any other genes; second, histone variants are widespread across many eukaryotic groups. The present work further supports the ancestral nature of histone variants by providing the first in vivo characterization of a functional macroH2A histone (a variant long defined as a specific refinement of vertebrate chromatin) in a non-vertebrate organism (the mussel Mytilus) revealing its recruitment into heterochromatic fractions of actively proliferating tissues. Combined with in silico analyses of genomic data, these results provide evidence for the widespread presence of macroH2A in metazoan animals, as well as in the holozoan Capsaspora, supporting an evolutionary origin for this histone variant lineage before the radiation of Filozoans (including Filasterea, Choanoflagellata and Metazoa). Overall, the results presented in this work help configure a new evolutionary scenario in which histone variants, rather than modern "deviants" of canonical histones, would constitute ancient components of eukaryotic chromatin.


Subject(s)
Chromatin/genetics , Evolution, Molecular , Histones/genetics , Animals , Chromatin/metabolism , Conserved Sequence , Histone Code , Histones/metabolism , Lancelets/genetics , Mice , Mytilus/genetics , Sea Anemones/genetics , Ticks/genetics
20.
PeerJ ; 3: e1429, 2015.
Article in English | MEDLINE | ID: mdl-26618092

ABSTRACT

Background. Harmful Algal Blooms (HABs) responsible for Diarrhetic Shellfish Poisoning (DSP) represent a major threat for human consumers of shellfish. The biotoxin Okadaic Acid (OA), a well-known phosphatase inhibitor and tumor promoter, is the primary cause of acute DSP intoxications. Although several studies have described the molecular effects of high OA concentrations on sentinel organisms (e.g., bivalve molluscs), the effect of prolonged exposures to low (sublethal) OA concentrations is still unknown. In order to fill this gap, this work combines Next-Generation sequencing and custom-made microarray technologies to develop an unbiased characterization of the transcriptomic response of mussels during early stages of a DSP bloom. Methods. Mussel specimens were exposed to a HAB episode simulating an early stage DSP bloom (200 cells/L of the dinoflagellate Prorocentrum lima for 24 h). The unbiased characterization of the transcriptomic responses triggered by OA was carried out using two complementary methods of cDNA library preparation: normalized and Suppression Subtractive Hybridization (SSH). Libraries were sequenced and read datasets were mapped to Gene Ontology and KEGG databases. A custom-made oligonucleotide microarray was developed based on these data, completing the expression analysis of digestive gland and gill tissues. Results. Our findings show that exposure to sublethal concentrations of OA is enough to induce gene expression modifications in the mussel Mytilus. Transcriptomic analyses revealed an increase in proteasomal activity, molecular transport, cell cycle regulation, energy production and immune activity in mussels. Oppositely, a number of transcripts hypothesized to be responsive to OA (notably the Serine/Threonine phosphatases PP1 and PP2A) failed to show substantial modifications. Both digestive gland and gill tissues responded similarly to OA, although expression modifications were more dramatic in the former, supporting the choice of this tissue for future biomonitoring studies. Discussion. Exposure to OA concentrations within legal limits for safe consumption of shellfish is enough to disrupt important cellular processes in mussels, eliciting sharp transcriptional changes as a result. By combining the study of cDNA libraries and a custom-made OA-specific microarray, our work provides a comprehensive characterization of the OA-specific transcriptome, improving the accuracy of the analysis of expresion profiles compared to single-replicated RNA-seq methods. The combination of our data with related studies helps understanding the molecular mechanisms underlying molecular responses to DSP episodes in marine organisms, providing useful information to develop a new generation of tools for the monitoring of OA pollution.

SELECTION OF CITATIONS
SEARCH DETAIL
...