Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 5474, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443456

ABSTRACT

Two new series of oxadiazole and pyrazoline derivatives were designed and synthesized as promising EGFR-TK inhibitors. The in vitro antiproliferative activity was studied against three human cancer cell lines; HCT116, HepG-2 and MCF7 using MTT assay. Compound 10c showed the most potent anticancer activity against all cancer cell lines, with IC50 range of 1.82 to 5.55 µM, while proving safe towards normal cells WI-38 (IC50 = 41.17 µM) compared to the reference drug doxorubicin (IC50 = 6.72 µM). The most active candidates 5a, 9b, 10a, 10b and 10c were further assessed for their EGFR-TK inhibition. The best of which, compounds 5a and 10b showed IC50 of 0.09 and 0.16 µM respectively compared to gefitinib (IC50 = 0.04 µM). Further investigation against other EGFR family members, showed that 5a displayed good activities against HER3 and HER4 with IC50 values 0.18 and 0.37 µM, respectively compared to gefitinib (IC50 = 0.35 and 0.58 µM, respectively). Furthermore, 5a was evaluated for cell cycle distribution and apoptotic induction on HepG-2 cells. It induced mitochondrial apoptotic pathway and increased accumulation of ROS. Molecular docking study came in agreement with the biological results. Compounds 5a and 10b showed promising drug-likeness with good physicochemical properties.


Subject(s)
ErbB Receptors , Oxadiazoles , Humans , Gefitinib , Molecular Docking Simulation , Cell Cycle , Oxadiazoles/pharmacology
2.
Drug Dev Res ; 85(1): e22126, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37915124

ABSTRACT

A hypoxic environment occurs predominantly in tumors. During the growth phase of a tumor, it grows until it exceeds its blood supply, leaving regions of the tumor in which the oxygen pressure is dramatically low. They are virtually absent in normal tissues, thus creating perfect conditions for selective bioreductive therapy of tumors. To this aim, a novel series of cytotoxic radiosensitizer agents were synthesized by linking the nitroimidazole scaffold with oxadiazole or triazole rings. The majority of the compounds exhibited moderate to excellent antiproliferative activities toward HCT116 cell line under normoxic and hypoxic conditions. The structure-activity relationship study revealed that compounds containing the free thiol group either in the oxadiazoles 11a,b or the triazoles 21a,b-23a,b demonstrated the strongest antiproliferative activity, which proves that the free thiol group plays a crucial role in the antiproliferative activity of our compounds under both normoxic (half-maximal inhibitory concentration [IC50 ] = 12.50-24.39 µM) and hypoxic conditions (IC50 = 4.69-11.56 µM). Radiosensitizing assay of the four most active cytotoxic compounds 11b and 21-23b assured the capability of the compounds to enhance the sensitivity of the tumor cells to the DNA damaging activity of γ-radiation (IC50 = 2.23-5.18 µM). To further investigate if the cytotoxicity of our most active compounds was due to a specific signaling pathway, the online software SwissTargetPrediction was exploited and a molecular docking study was done that proposed cyclin-dependent kinase 2 (CDK2) enzyme to be the most promising target. The CDK2 inhibitory assay assured this assumption as five out of six compounds demonstrated a comparable inhibitory activity with roscovitine, among which compound 21b showed threefold more potent inhibitory activity in comparison with the reference compound. A further biological evaluation proved compound 21b to have an apoptotic activity and cell cycle arrest activity at the G1 and S phases. During the AutoQSAR analysis, the model demonstrated excellent regression between the predicted and experimental activity with r2 = 0.86. Subsequently, we used the model to predict the activity of the test set compounds that came with r2 = 0.95.


Subject(s)
Antineoplastic Agents , Antiprotozoal Agents , Nitroimidazoles , Humans , Molecular Docking Simulation , Molecular Structure , Quantitative Structure-Activity Relationship , Cell Line, Tumor , Tumor Hypoxia , Cell Proliferation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Cytotoxins , Nitroimidazoles/pharmacology , Antiprotozoal Agents/pharmacology , Sulfhydryl Compounds , Protein Kinase Inhibitors/pharmacology
3.
ACS Omega ; 7(49): 45455-45468, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530275

ABSTRACT

Synthesis of a new series of 20 compounds bearing the thieno[2,3-d]pyrimidine-4-one scaffold was achieved. The inhibitory activity of these compounds was performed over 60 cell lines of human tumor at single and five dose concentrations. Compounds 20, 22, and 23 exhibited potent growth inhibitions toward the majority of the tested NCI 60 cell lines. Compounds 20 and 23 were the most active compounds with (MG-MID) TGI, GI50, and LC50 values of 16.2, 3.3, 50.1 and 67.7, 6.6, 100, respectively. Also, both compounds showed 7- and 4-fold better activity, respectively, than the standard antitumor agent 5-fluorouracil. Therefore, compounds 20 and 23 were selected to measure their ability to inhibit the dihydrofolate reductase enzyme (DHFR) in comparison to methotrexate (MTX) as a reference drug. Compound 20 was a more potent inhibitor of DHFR (IC50 = 0.20 µM) than MTX (IC50 = 0.22 µM). Molecular modeling studies were performed in the DHFR active site, and it showed compatibility with the results obtained from biological studies. Finally, the results showed that compound 20 is a strong antitumor agent and potent inhibitor of DHFR. In addition, this compound induced cell-cycle arrest in SNB-75 cells in the G2/M phase and the apoptosis process in the Pre-G phase. Compound 20 also increased the level of both caspases-3 and 9 by 11.8- and 50.3-fold, respectively.

4.
Bioorg Chem ; 129: 106125, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36126606

ABSTRACT

A new series of triclosan (TCL)-mimicking diaryl ether derivatives 7-25 were synthesized and evaluated as inhibitors of enoyl acyl carrier protein reductase InhA enzyme. In addition, these derivatives were screened as inhibitors of drug-susceptible (DS), multidrug-resistant (MDR), and extensive drug-resistant (XDR) Mycobacterium tuberculosis (MTB) strains. Most compounds exihibted superior anti-TB activities and improved ClogP compared to TCL as a standard drug. The present work has led to the identification of compounds 14, 19 and 24 which possess remarkable activities against DS, MDR and XDR MTB strains with MIC values of 1.95, 3.9 and 15.63 µg/ml, respectively for compound 14, 1.95, 3.9 and 7.81 µg/ml, respectively for compound 19 and 0.98, 1.95 and 3.9 µg/ml, respectively for compound 24. Most compounds did not exhibit toxicity to HePG2 normal cell line. Compounds 14, 19 and 24, presenting the best MIC values, were further evaluated as inhibitors of InhA enzyme. They showed high binding affinities in the micromolar range with IC50 values of 1.33, 0.6, and 0.29 µM for compounds 14, 19, and 24, respectively. Furthermore, molecular docking approach was utilized to understand the difference in bioactivities between the new compounds. In particular, the results revealed strong binding interactions and high docking scores of compounds 14, 19 and 24, which could correlate with their high activities. Mainly, the molecular modelling study of compound 24 provides an excellent platform for understanding the molecular mechanism regarding InhA inhibition. Thus, compound 24 could be a lead compound for future development of new antitubercular drugs.


Subject(s)
Mycobacterium tuberculosis , Triclosan , Molecular Docking Simulation , Microbial Sensitivity Tests , Ether , Antitubercular Agents/chemistry , Triclosan/pharmacology , Bacterial Proteins/metabolism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
5.
Molecules ; 27(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36014485

ABSTRACT

Benzimidazole derivatives are known to be key players in the development of novel anticancer agents. Herein, we aimed to synthesize novel derivatives to target breast cancer. A new series of benzimidazole derivatives conjugated with either six- and five-membered heterocyclic ring or pyrazanobenzimidazoles and pyridobenzimidazole linkers were synthesized yielding compounds 5-8 and 10-14, respectively. Structure elucidation of the newly synthesized compounds was achieved through microanalytical analyses and different spectroscopic techniques (1H, 13C-APT and 1H-1H COSY and IR) in addition to mass spectrometry. A biological study for the newly synthesized compounds was performed against breast cancer cell lines (MCF-7), and the most active compounds were further subjected to normal Human lung fibroblast (WI38) which indicates their safety. It was found that most of them exhibit high cytotoxic activity against breast cancer (MCF-7) and low cytotoxic activity against normal (WI38) cell lines. Compounds 5, 8, and 12, which possess the highest anti-breast cancer activity against the MCF-7 cell line, were selected for Pin1 inhibition assay using tannic acid as a reference drug control. Compound 8 was examined for its effect on cell cycle progression and its ability to apoptosis induction. Mechanistic evaluation of apoptosis induction was demonstrated by triggering intrinsic apoptotic pathways via inducing ROS accumulation, increasing Bax, decreasing Bcl-2, and activation of caspases 6, 7, and 9. Binding to 15N-labeled Pin1 enzyme was performed using state-of-the-art 15N-1H HSQC NMR experiments to describe targeting breast cancer on a molecular level. In conclusion, the NMR results demonstrated chemical shift perturbation (peak shifting or peak disappearance) upon adding compound 12 indicating potential binding. Molecular docking using 'Molecular Operating Environment' software was extremely useful to elucidate the binding mode of active derivatives via hydrogen bonding.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Breast Neoplasms/drug therapy , Cell Proliferation , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Nuclear Magnetic Resonance, Biomolecular , Structure-Activity Relationship
6.
Biophys Chem ; 278: 106660, 2021 11.
Article in English | MEDLINE | ID: mdl-34482215

ABSTRACT

Schistosomiasis is one of the neglected diseases causing considerable morbidity and mortality throughout the world. Microtubules with its main component, tubulin play a vital role in helminthes including schistosomes. Benzimidazoles represent potential drug candidates by binding ß-tubulin. The study aimed to generate a homology model for the ß-tubulin of S. mansoni using the crystal structure of O visaries (Sheep) ß-tubulin (PDB ID: 3N2G D) as a template, then different ß-tubulin models were generated and two previously reported benzimidazole derivatives (NBTP-F and NBTP-OH) were docked to the generated models, the binding results indicated that both S. mansoni, S. haematobium were susceptible to the two NBTP derivatives. Additionally, three mutated versions of S. mansoni ß-tubulin wild-type were generated and the mutation (F185Y) seems to slightly enhance the ligand binding. Dynamics simulation experiments showed S. haematobium ß-tubulin is highly susceptible to the tested compounds; similar to S. mansoni, moreover, mutated models of S. mansoni ß-tubulin altered its NBTPs susceptibility. Moreover, additional seven new benzimidazole derivatives were synthesized and tested by molecular docking on the generated model binding site of S. mansoni ß-tubulin and were found to have good interaction inside the pocket.


Subject(s)
Schistosoma mansoni , Tubulin , Animals , Binding Sites , Molecular Docking Simulation , Molecular Dynamics Simulation , Schistosoma mansoni/metabolism , Sheep , Tubulin/chemistry , Tubulin/metabolism
7.
Bioorg Med Chem ; 28(11): 115495, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32307260

ABSTRACT

New series of benzimidazole ring core conjugated with either dithiocarbamate or thiopropyl linkers, hybridized with different secondary amines were synthesized; 5-15 and 22-31; respectively. The new compounds were characterized by different spectroscopic techniques (1H, 13C 1D & 2D NMR, ESI-MS and IR). They were screened for in vitro anticancer activity against breast cancer using MCF7 cell line. The results obtained revealed that compounds 5, 12, 15 and 25 were the most active among the synthesized series exhibiting IC50 < 10 µg/ml against DOX. To characterize targeting breast cancer on molecular level, binding to 15N-labeled Pin1 enzyme was conducted using state-of-the-art 2D NMR binding experiments. Results showed promising binding between compounds 5, 12, and 25 by chemical shift perturbation (peak shifting or peak disappearance). Molecular docking study were quite valuable to explain the binding mode of active derivatives via hydrogen bonding. Additional contact preferences and surface mapping studies stated the similarity pattern between active candidates which may pave the way for more precise anti breast cancer target optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Breast Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Structure-Activity Relationship
8.
Bioorg Chem ; 90: 103076, 2019 09.
Article in English | MEDLINE | ID: mdl-31260878

ABSTRACT

A new series of pyrido[2,3-d]pyrimidines 3-18 bearing substitution at C-5 position was synthesized. All compounds were tested for their in vitro antitumor activity against five human cancer cell lines namely; hepatocellular carcinoma (HePG2), breast carcinoma (MCF-7), human prostate carcinoma (PC3), colorectal carcinoma (HCT-116), and cervical carcinoma (Hela) using doxorubicin as a positive control. Compounds 3, 4, 9, 11, 13, 14, 15 and 17 exhibited the highest antitumor activity against the tested cell lines and were selected to screen their enzymatic inhibition against dihydrofolate reductase enzyme (DHFR) compared with the reference drug methotrexate (MTX), to explain the probable mechanism of action of the observed anticancer activity. Compound 11 displayed the highest inhibitory activity (IC50 = 6.5 µM) among the tested compounds in comparison with MTX (IC50 = 5.57 µM). Also, compounds 13 and 14 showed high inhibitory activity against DHFR with IC50 values 7.1 and 8.7 µM, respectively. Comparative molecular modeling study was performed between DHFR inhibitors 11, 13 and 14 of the highest activity and 10 of the lowest activity among the eight inhibitors against MTX. Docking studies into the active site of DHFR domain showed good agreement with the obtained biological results. Finally, compound 11 was found to be best antitumor, DHFR inhibitor, and it induced the process of apoptosis at Pre-G phase and cell cycle arrest at G2/M phase in MCF-7 cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/pharmacology , Neoplasms/drug therapy , Pyrimidines/chemistry , Tetrahydrofolate Dehydrogenase/chemistry , Apoptosis , Cell Division , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Neoplasms/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
9.
J Adv Pharm Technol Res ; 8(1): 25-28, 2017.
Article in English | MEDLINE | ID: mdl-28217551

ABSTRACT

Glaucoma is a serious chronic ophthalmic disease since it causes irreversible visual disability if untreated can lead to blindness. Treatment options include medications (classified into five major classes of drugs which are muscarinic cholinergic agonists, alpha-2 adrenergic agonists, beta-1 adrenergic antagonists, prostaglandins [PGs], and carbonic anhydrase inhibitors); use of laser therapy or conventional surgery. Pharmacoeconomic analysis helps in choosing among this variety of treatments. There is a great need for such analysis in Egypt since undergoing of it in different countries or societies may produce different results. This work aimed to compare cost-effectiveness of bimatoprost 0.03% once daily versus brimonidine 0.2% twice daily and timolol 0.5% twice daily as monotherapy treatment in Egyptian patients with open-angle glaucoma or ocular hypertension. Clinical data revealed that all treatments decreased intraocular pressure (IOP) significantly but bimatoprost 0.03% showed the highest efficacy (27.7% decrease in IOP from baseline), while timolol 0.5% reduced IOP by 22.5% then brimonidine 0.2% which decreased IOP by 20.8%. From the cost-effectiveness view, it would be preferable to initiate treatment with timolol in case of absence of any contraindications. PG analog can be used as add-on therapy in low responder patients or as alternative treatment in case of presence of contraindication to use of beta blockers.

10.
Bioorg Med Chem ; 19(7): 2156-67, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21421317

ABSTRACT

The effects of replacing the central furan ring of furamidine with indole and benzimidazole on their DNA binding affinity, antiparasitic activity and fluorescence are reported. The bis-cyanophenylindoles required to make the corresponding amidines were prepared by sequential Stille and/or Suzuki coupling reactions. The bis-cyanophenylbenzimidazoles were obtained by coupling 4-cyanobenzaldehydes with the appropriate cyano substituted phenylenediamine. The bis-nitriles were converted to the diamidines by reaction with LiN[Si(CH(3))(3)](2) or by Pinner methodology. Specifically, we have prepared new series of 2,6- and 2,5-diaryl indoles (6a,b, 12 and 17a-d) and the related benzimidazoles (24, 30 and 35). The new compounds bind in the DNA minor groove in DNA AT base pair sequences and eight of the ten new analogues exhibit ΔT(m) values comparable to or higher than that of furamidine. Six of ten of the new compounds exhibit lower IC(50) values against Trypanosoma brucei rhodesiense (T. b. r.) and eight of ten exhibit lower IC(50) values against Plasmodium falciparum (P. f.) than furamidine. Four of the ten show greater efficacy than furamidine in the rigorous T. b. r. STIB900 mouse model for African trypanosomiasis. Generally, the fluorescence properties of the new analogues are similar to that of DAPI.


Subject(s)
Antiparasitic Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Benzamidines/chemical synthesis , Benzamidines/pharmacology , DNA, Protozoan/drug effects , Animals , Antiparasitic Agents/therapeutic use , Antiprotozoal Agents/chemistry , Benzamidines/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Circular Dichroism , Cross-Linking Reagents/chemistry , DNA, Protozoan/metabolism , Fluorescence , Humans , Mice , Models, Chemical , Molecular Structure , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/drug effects , Trypanosoma brucei rhodesiense/genetics
11.
Bioorg Med Chem ; 18(2): 557-66, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20031421

ABSTRACT

A novel series of extended DAPI analogues were prepared by insertion of either a carbon-carbon triple bond (16a-d) or a phenyl group (21a,b and 24) at position-2. The new amidines were evaluated in vitro against both Trypanosoma brucei rhodesiense (T. b. r.) and Plasmodium falciparum (P. f.). Five compounds (16a, 16b, 16d, 21a, 21b) exhibited IC(50) values against T. b. r. of 9nM or less which is two to nine folds more effective than DAPI. The same five compounds exhibited IC(50) values against P. f. of 5.9nM or less which is comparable to that of DAPI. The fluorescence properties of these new molecules were recorded, however; they do not offer any advantage over those of DAPI.


Subject(s)
DNA, Protozoan/drug effects , Fluorescence , Indoles/chemical synthesis , Indoles/pharmacology , Plasmodium falciparum/drug effects , Trypanosoma brucei rhodesiense/drug effects , Animals , Apoptosis/drug effects , Binding Sites , Cells, Cultured , DNA, Protozoan/chemistry , Drug Evaluation, Preclinical , Indoles/chemistry , Molecular Structure , Parasitic Sensitivity Tests , Rats
12.
J Heterocycl Chem ; 47(1): 167-170, 2010 01 08.
Article in English | MEDLINE | ID: mdl-24634543

ABSTRACT

Syntheses of new formyl ester- and cyano ester-substituted bithiophenes, bifurans, and furanothiophenes in good yield are described. The key synthetic step uses Stille coupling of appropriately substituted bromo 5-ring heterocycles with stannyl-substituted 5-ring heterocycles.

SELECTION OF CITATIONS
SEARCH DETAIL