Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Magn Reson Imaging Clin N Am ; 31(3): 395-411, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37414468

ABSTRACT

Magnetic resonance angiography sequences, such as time-of-flight and contrast-enhanced angiography, provide clear depiction of vessel lumen, traditionally used to evaluate carotid pathologic conditions such as stenosis, dissection, and occlusion; however, atherosclerotic plaques with a similar degree of stenosis may vary tremendously from a histopathological standpoint. MR vessel wall imaging is a promising noninvasive method to evaluate the content of the vessel wall at high spatial resolution. This is particularly interesting in the case of atherosclerosis as vessel wall imaging can identify higher risk, vulnerable plaques as well as has potential applications in the evaluation of other carotid pathologic conditions.


Subject(s)
Carotid Stenosis , Plaque, Atherosclerotic , Humans , Carotid Stenosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Constriction, Pathologic , Magnetic Resonance Angiography/methods
2.
Magn Reson Imaging Clin N Am ; 31(3): 461-474, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37414472

ABSTRACT

Conventional vascular imaging methods have primarily focused on evaluating the vascular lumen. However, these techniques are not intended to evaluate vessel wall abnormalities where many cerebrovascular pathologies reside. With increased interest for the visualization and study of the vessel wall, high-resolution vessel wall imaging (VWI) has gained traction.Over the past two decades, there has been a rapid increase in number of VWI publications with improvements in imaging techniques and expansion on clinical applications. With increasing utility and interest in VWI, application of proper protocols and understanding imaging characteristics of vasculopathies are important for the interpreting radiologists to understand.


Subject(s)
Cerebrovascular Disorders , Vascular Diseases , Humans , Magnetic Resonance Imaging/methods , Cerebrovascular Disorders/diagnostic imaging , Magnetic Resonance Angiography/methods
3.
Radiographics ; 43(6): e220147, 2023 06.
Article in English | MEDLINE | ID: mdl-37167089

ABSTRACT

There has been extensive growth in both the technical development and the clinical applications of MRI, establishing this modality as one of the most powerful diagnostic imaging tools. However, long examination and image interpretation times still limit the application of MRI, especially in emergent clinical settings. Rapid and abbreviated MRI protocols have been developed as alternatives to standard MRI, with reduced imaging times, and in some cases limited numbers of sequences, to more efficiently answer specific clinical questions. A group of rapid MRI protocols used at the authors' institution, referred to as FAST (focused abbreviated survey techniques), are designed to include or exclude emergent or urgent conditions or screen for specific entities. These FAST protocols provide adequate diagnostic image quality with use of accelerated approaches to produce imaging studies faster than traditional methods. FAST protocols have become critical diagnostic screening tools at the authors' institution, allowing confident and efficient confirmation or exclusion of actionable findings. The techniques commonly used to reduce imaging times, the imaging protocols used at the authors' institution, and future directions in FAST imaging are reviewed to provide a practical and comprehensive overview of FAST MRI for practicing neuroradiologists. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.


Subject(s)
Magnetic Resonance Imaging , Spine , Humans , Magnetic Resonance Imaging/methods , Spine/diagnostic imaging , Brain/diagnostic imaging , Review Literature as Topic
4.
Radiology ; 307(3): e222685, 2023 05.
Article in English | MEDLINE | ID: mdl-36943077

ABSTRACT

Background Characterizing cerebrovascular hemodynamics in older adults is important for identifying disease and understanding normal neurovascular aging. Four-dimensional (4D) flow MRI allows for a comprehensive assessment of cerebral hemodynamics in a single acquisition. Purpose To establish reference intracranial blood flow and pulsatility index values in a large cross-sectional sample of middle-aged (45-65 years) and older (>65 years) adults and characterize the effect of age and sex on blood flow and pulsatility. Materials and Methods In this retrospective study, patients aged 45-93 years (cognitively unimpaired) underwent cranial 4D flow MRI between March 2010 and March 2020. Blood flow rates and pulsatility indexes from 13 major arteries and four venous sinuses and total cerebral blood flow were collected. Intraobserver and interobserver reproducibility of flow and pulsatility measures was assessed in 30 patients. Descriptive statistics (mean ± SD) of blood flow and pulsatility were tabulated for the entire group and by age and sex. Multiple linear regression and linear mixed-effects models were used to assess the effect of age and sex on total cerebral blood flow and vessel-specific flow and pulsatility, respectively. Results There were 759 patients (mean age, 65 years ± 8 [SD]; 506 female patients) analyzed. For intra- and interobserver reproducibility, median intraclass correlation coefficients were greater than 0.90 for flow and pulsatility measures across all vessels. Regression coefficients ß ± standard error from multiple linear regression showed a 4 mL/min decrease in total cerebral blood flow each year (age ß = -3.94 mL/min per year ± 0.44; P < .001). Mixed effects showed a 1 mL/min average annual decrease in blood flow (age ß = -0.95 mL/min per year ± 0.16; P < .001) and 0.01 arbitrary unit (au) average annual increase in pulsatility over all vessels (age ß = 0.011 au per year ± 0.001; P < .001). No evidence of sex differences was observed for flow (ß = -1.60 mL/min per male patient ± 1.77; P = .37), but pulsatility was higher in female patients (sex ß = -0.018 au per male patient ± 0.008; P = .02). Conclusion Normal reference values for blood flow and pulsatility obtained using four-dimensional flow MRI showed correlations with age. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Steinman in this issue.


Subject(s)
Cerebral Arteries , Cerebrovascular Circulation , Cranial Sinuses , Hemodynamics , Magnetic Resonance Imaging , Humans , Middle Aged , Aging , Aged , Blood Flow Velocity/physiology , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Male , Female , Aged, 80 and over , Retrospective Studies , Cranial Sinuses/diagnostic imaging , Cerebral Arteries/diagnostic imaging
5.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R207-R215, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36622085

ABSTRACT

Menopause is associated with adverse changes in vascular health coinciding with an increased risk of stroke and vascular cognitive impairment. However, there is significant variation in the age at menopause. The present study examined how the age at natural menopause impacts cerebrovascular reactivity and structural biomarkers of brain aging. Thirty-five healthy postmenopausal women were classified as early-onset menopause (Early; n = 19, age at menopause: 47 ± 2 yr) or later-onset menopause (Late; n = 16, age at menopause: 55 ± 2 yr). Middle cerebral artery blood velocity (MCAv), mean arterial blood pressure (MAP), and end-tidal carbon dioxide (ETCO2) were recorded during a stepped hypercapnia protocol. Reactivity was calculated as the slope of the relationship between ETCO2 and each variable of interest. Brain volumes and white matter hyperintensities (WMHs) were obtained with 3T MRI. Resting MAP was greater in the Early group (99 ± 9 mmHg) compared with the Late group (90 ± 12 mmHg; P = 0.02). Cerebrovascular reactivity, assessed using MCAv, was blunted in the Early group (1.87 ± 0.92 cm/s/mmHg) compared with the Late group (2.37 ± 0.75 cm/s/mmHg; P = 0.02). Total brain volume did not differ between groups (Early: 1.08 ± 0.07 L vs. Late: 1.07 ± 0.06 L; P = 0.66), but the Early group demonstrated greater WMH fraction compared with the Late group (Early: 0.36 ± 0.14% vs. Late: 0.25 ± 0.14%; P = 0.02). These results suggest that age at natural menopause impacts cerebrovascular function and WMH burden in healthy postmenopausal women.


Subject(s)
Brain , Cerebrovascular Circulation , Humans , Female , Cerebrovascular Circulation/physiology , Brain/physiology , Carbon Dioxide , Hypercapnia , Menopause , Blood Flow Velocity
6.
Transl Res ; 254: 41-53, 2023 04.
Article in English | MEDLINE | ID: mdl-36529160

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Cognitive Dysfunction , Humans , Blood-Brain Barrier/metabolism , Brain/pathology
7.
Magn Reson Imaging ; 97: 46-55, 2023 04.
Article in English | MEDLINE | ID: mdl-36581214

ABSTRACT

Cranial 4D flow MRI post-processing typically involves manual user interaction which is time-consuming and associated with poor repeatability. The primary goal of this study is to develop a robust quantitative velocity tool (QVT) that utilizes threshold-based segmentation techniques to improve segmentation quality over prior approaches based on centerline processing schemes (CPS) that utilize k-means clustering segmentation. This tool also includes an interactive 3D display designed for simplified vessel selection and automated hemodynamic visualization and quantification. The performances of QVT and CPS were compared in vitro in a flow phantom and in vivo in 10 healthy participants. Vessel segmentations were compared with ground-truth computed tomography in vitro (29 locations) and manual segmentation in vivo (13 locations) using linear regression. Additionally, QVT and CPS MRI flow rates were compared to perivascular ultrasound flow in vitro using linear regression. To assess internal consistency of flow measures in vivo, conservation of flow was assessed at vessel junctions using linear regression and consistency of flow along vessel segments was analyzed by fitting a Gaussian distribution to a histogram of normalized flow values. Post-processing times were compared between the QVT and CPS using paired t-tests. Vessel areas segmented in vitro (CPS: slope = 0.71, r = 0.95 and QVT: slope = 1.03, r = 0.95) and in vivo (CPS: slope = 0.61, r = 0.96 and QVT: slope = 0.93, r = 0.96) were strongly correlated with ground-truth area measurements. However, CPS (using k-means segmentation) consistently underestimated vessel areas. Strong correlations were observed between QVT and ultrasound flow (slope = 0.98, r = 0.96) as well as flow at junctions (slope = 1.05, r = 0.98). Mean and standard deviation of flow along vessel segments was 9.33e-16 ± 3.05%. Additionally, the QVT demonstrated excellent interobserver agreement and significantly reduced post-processing by nearly 10 min (p < 0.001). By completely automating post-processing and providing an easy-to-use 3D visualization interface for interactive vessel selection and hemodynamic quantification, the QVT offers an efficient, robust, and repeatable means to analyze cranial 4D flow MRI. This software is freely available at: https://github.com/uwmri/QVT.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Humans , Imaging, Three-Dimensional/methods , Blood Flow Velocity , Magnetic Resonance Imaging/methods , Hemodynamics , Tomography, X-Ray Computed
8.
Magn Reson Med ; 89(2): 800-811, 2023 02.
Article in English | MEDLINE | ID: mdl-36198027

ABSTRACT

PURPOSE: To investigate the acceleration of 4D-flow MRI using a convolutional neural network (CNN) that produces three directional velocities from three flow encodings, without requiring a fourth reference scan measuring background phase. METHODS: A fully 3D CNN using a U-net architecture was trained in a block-wise fashion to take complex images from three flow encodings and to produce three real-valued images for each velocity component. Using neurovascular 4D-flow scans (n = 144), the CNN was trained to predict velocities computed from four flow encodings by standard reconstruction including correction for residual background phase offsets. Methods to optimize loss functions were investigated, including magnitude, complex difference, and uniform velocity weightings. Subsequently, 3-point encoding was evaluated using cross validation of pixelwise correlation, flow measurements in major arteries, and in experiments with data at differing acceleration rates than the training data. RESULTS: The CNN-produced 3-point velocities showed excellent agreements with the 4-point velocities, both qualitatively in velocity images, in flow rate measures, and quantitatively in regression analysis (slope = 0.96, R2  = 0.992). Optimizing the training to focus on vessel velocities rather than the global velocity error and improved the correlation of velocity within vessels themselves. The lowest error was observed when the loss function used uniform velocity weighting, in which the magnitude-weighted inverse of the velocity frequency uniformly distributed weighting across all velocity ranges. When applied to highly accelerated data, the 3-point network maintained a high correlation with ground truth data and demonstrated a denoising effect. CONCLUSION: The 4D-flow MRI can be accelerated using machine learning requiring only three flow encodings to produce three-directional velocity maps with small errors.


Subject(s)
Machine Learning , Magnetic Resonance Imaging , Blood Flow Velocity , Reproducibility of Results , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods
9.
Alzheimers Dement (Amst) ; 14(1): e12360, 2022.
Article in English | MEDLINE | ID: mdl-36187195

ABSTRACT

Introduction: While it is generally appreciated that amyloid precedes symptomatic Alzheimer's disease (AD) by decades, a greater understanding of this timeline may increase prognostic accuracy, planning, and care of persons who are on the AD continuum. Methods: We examined trajectories of Clinical Dementia Rating-Sum of Boxes (CDR-SB) relative to estimated years of amyloid positivity (A+) in n = 123 participants who were all A+ based on [C-11]Pittsburgh compound B positron emission tomography. Results: The average amyloid chronicity at CDR-SB of 2.5 was 20.1 years. The average trajectory of CDR-SB accelerated after 10 years of elevated amyloid and varied greatly between 10 and 30 years. Exploratory analyses suggested that older age and higher volume of white matter hyperintensities shortened the interval between amyloid onset and cognitive impairment. Discussion: The recontextualization of amyloid burden into the time domain will facilitate studies of disease progression, the influence of co-pathology, and factors that hasten or slow cognitive impairment.

10.
Front Neurol ; 13: 968390, 2022.
Article in English | MEDLINE | ID: mdl-35968273

ABSTRACT

Despite advancements in multi-modal imaging techniques, a substantial portion of ischemic stroke patients today remain without a diagnosed etiology after conventional workup. Based on existing diagnostic criteria, these ischemic stroke patients are subcategorized into having cryptogenic stroke (CS) or embolic stroke of undetermined source (ESUS). There is growing evidence that in these patients, non-cardiogenic embolic sources, in particular non-stenosing atherosclerotic plaque, may have significant contributory roles in their ischemic strokes. Recent advancements in vessel wall MRI (VW-MRI) have enabled imaging of vessel walls beyond the degree of luminal stenosis, and allows further characterization of atherosclerotic plaque components. Using this imaging technique, we are able to identify potential imaging biomarkers of vulnerable atherosclerotic plaques such as intraplaque hemorrhage, lipid rich necrotic core, and thin or ruptured fibrous caps. This review focuses on the existing evidence on the advantages of utilizing VW-MRI in ischemic stroke patients to identify culprit plaques in key anatomical areas, namely the cervical carotid arteries, intracranial arteries, and the aortic arch. For each anatomical area, the literature on potential imaging biomarkers of vulnerable plaques on VW-MRI as well as the VW-MRI literature in ESUS and CS patients are reviewed. Future directions on further elucidating ESUS and CS by the use of VW-MRI as well as exciting emerging techniques are reviewed.

11.
Neuroradiology ; 64(9): 1747-1754, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35333949

ABSTRACT

PURPOSE: Brain herniation into arachnoid granulations (BHAG) of the dural venous sinuses is a recently described finding of uncertain etiology. The purpose of this study was to investigate the prevalence of BHAG in a cohort of patients with pulsatile tinnitus (PT) and to clarify the physiologic and clinical implications of these lesions. METHODS: The imaging and charts of consecutive PT patients were retrospectively reviewed. All patients were examined with MRI including pre- and post-contrast T1- and T2-weighted sequences. Images were reviewed separately by three blinded neuroradiologists to identify the presence of BHAG. Their location, signal intensity, size, presence of arachnoid granulation, and associated dural venous sinus stenosis were documented. Clinical records were further reviewed for idiopathic intracranial hypertension, history of prior lumbar puncture, and opening pressure. RESULTS: Two hundred sixty-two consecutive PT patients over a 4-year period met inclusion criteria. PT patients with BHAG were significantly more likely to have idiopathic intracranial hypertension than PT patients without BHAG (OR 4.2, CI 1.5-12, p = 0.006). Sixteen out of 262 (6%) patients were found to have 18 BHAG. Eleven out of 16 (69%) patients had unilateral temporal or occipital lobe herniations located in the transverse sinus or the transverse-sigmoid junction. Three out of 16 (19%) patients had unilateral cerebellar herniations and 2/16 (13%) patients had bilateral BHAG. CONCLUSION: In patients with PT, BHAG is a prevalent MRI finding that is strongly associated with the clinical diagnosis of IIH. The pathogenesis of BHAG remains uncertain, but recognition should prompt comprehensive evaluation for IIH.


Subject(s)
Brain Diseases , Intracranial Hypertension , Pseudotumor Cerebri , Tinnitus , Arachnoid/diagnostic imaging , Arachnoid/pathology , Brain/pathology , Brain Diseases/pathology , Cranial Sinuses/diagnostic imaging , Cranial Sinuses/pathology , Encephalocele/complications , Encephalocele/diagnostic imaging , Encephalocele/epidemiology , Humans , Intracranial Hypertension/complications , Prevalence , Pseudotumor Cerebri/complications , Pseudotumor Cerebri/diagnostic imaging , Pseudotumor Cerebri/pathology , Retrospective Studies , Tinnitus/pathology
12.
Magn Reson Med ; 87(5): 2495-2511, 2022 05.
Article in English | MEDLINE | ID: mdl-34971458

ABSTRACT

PURPOSE: Streamlines from 4D-flow MRI have been used clinically for intracranial blood-flow tracking. However, deterministic and stochastic errors degrade streamline quality. The purpose of this study is to integrate displacement corrections, probabilistic streamlines, and novel fluid constraints to improve selective blood-flow tracking and emulate "virtual bolus injections." METHODS: Both displacement artifacts (deterministic) and velocity noise (stochastic) inherently occur during phase-contrast MRI acquisitions. Here, two displacement correction methods, single-step and iterative, were tested in silico with simulated displacements and were compared with ground-truth velocity fields. Next, the effects of combining displacement corrections and constrained probabilistic streamlines were performed in 10 healthy volunteers using time-averaged 4D-flow data. Measures of streamline length and depth into vasculature were then compared with streamlines generated with no corrections and displacement correction alone using one-way repeated-measures analysis of variance and Friedman's tests. Finally, virtual injections with improved streamlines were generated for three intracranial pathology cases. RESULTS: Iterative displacement correction outperformed the single-step method in silico. In volunteers, the combination of displacement corrections and constrained probabilistic streamlines allowed for significant improvements in streamline length and increased the number of streamlines entering the circle of Willis relative to streamlines with no corrections and displacement correction alone. In the pathology cases, virtual injections with improved streamlines were qualitatively similar to dynamic arterial spin labeling images and allowed for forward/reverse selective flow tracking to characterize cerebrovascular malformations. CONCLUSION: Virtual injections with improved streamlines from 4D-flow MRI allow for flexible, robust, intracranial flow tracking.


Subject(s)
Magnetic Resonance Angiography , Magnetic Resonance Imaging , Artifacts , Blood Flow Velocity , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Spin Labels
14.
Front Neurosci ; 15: 697432, 2021.
Article in English | MEDLINE | ID: mdl-34366779

ABSTRACT

Purpose: High-resolution vessel wall magnetic resonance imaging (VW-MRI) could provide a way to identify high risk arteriovenous malformation (AVM) features. We present the first pilot study of clinically unruptured AVMs evaluated by high-resolution VW-MRI. Methods: A retrospective review of clinically unruptured AVMs with VW-MRI between January 1, 2016 and December 31, 2018 was performed documenting the presence or absence of vessel wall "hyperintensity," or enhancement, within the nidus as well as perivascular enhancement and evidence of old hemorrhage (EOOH). The extent of nidal vessel wall "hyperintensity" was approximated into five groups: 0, 1-25, 26-50, 51-75, and 76-100%. Results: Of the nine cases, eight demonstrated at least some degree of vessel wall nidus "hyperintensity." Of those eight cases, four demonstrated greater than 50% of the nidus with hyperintensity at the vessel wall, and three cases had perivascular enhancement adjacent to nidal vessels. Although none of the subjects had prior clinical hemorrhage/AVM rupture, of the six patients with available susceptibility weighted imaging to assess for remote hemorrhage, only two had subtle siderosis to suggest prior sub-clinical bleeds. Conclusion: Vessel wall "enhancement" occurs in AVMs with no prior clinical rupture. Additional studies are needed to further investigate the implication of these findings.

16.
Magn Reson Med ; 86(1): 293-307, 2021 07.
Article in English | MEDLINE | ID: mdl-33615527

ABSTRACT

PURPOSE: Velocity selective arterial spin labeling (VS-ASL) is a promising approach for non-contrast perfusion imaging that provides robustness to vascular geometry and transit times; however, VS-ASL assumes spatially uniform tagging efficiency. This work presents a mapping approach to investigate VS-ASL relative tagging efficiency including the impact of local susceptibility effects on a BIR-8 preparation. METHODS: Numerical simulations of tagging efficiency were performed to evaluate sensitivity to regionally varying local susceptibility gradients and blood velocity. Tagging efficiency mapping was performed in susceptibility phantoms and healthy human subjects (N = 7) using a VS-ASL preparation module followed by a short, high spatial resolution 3D radial-based image acquisition. Tagging efficiency maps were compared to 4D-flow, B1 , and B0 maps acquired in the same imaging session for six of the seven subjects. RESULTS: Numerical simulations were found to predict reduced tagging efficiency with the combination of high blood velocity and local gradient fields. Phantom experiments corroborated numerical results. Relative efficiency mapping in normal volunteers showed unique efficiency patterns depending on individual subject anatomy and physiology. Uniform tagging efficiency was generally observed in vivo, but reduced efficiency was noted in regions of high blood velocity and local susceptibility gradients. CONCLUSION: We demonstrate an approach to map the relative tagging efficiency and show application of this methodology to a novel BIR-8 preparation recently proposed in the literature. We present results showing rapid flow in the presence of local susceptibility gradients can lead to complicated signal modulations in both tag and control images and reduced tagging efficiency.


Subject(s)
Arteries , Cerebrovascular Circulation , Humans , Imaging, Three-Dimensional , Magnetic Resonance Angiography , Spatial Analysis , Spin Labels
17.
J Am Heart Assoc ; 10(5): e019462, 2021 02.
Article in English | MEDLINE | ID: mdl-33586471

ABSTRACT

Background Stenosis has historically been the major factor used to determine carotid stroke sources. Recent evidence suggests that specific plaque features detected on imaging may be more highly associated with ischemic stroke than stenosis. We sought to determine computed tomography angiography (CTA) imaging features of carotid plaque that optimally discriminate ipsilateral stroke sources. Methods and Results In this institutional review board-approved retrospective cross-sectional study, 494 ipsilateral carotid CTA-brain magnetic resonance imaging pairs were available for analysis after excluding patients with alternative stroke sources. Carotid CTA and clinical markers were recorded, a multivariable Poisson regression model was fitted, and backward elimination was performed with a 2-sided threshold of P<0.10. Discriminatory value was determined using receiver operating characteristic analysis, area under the curve, and bootstrap validation. The final CTA carotid-source stroke prediction model included intraluminal thrombus (prevalence ratio, 2.8 [P<0.001]; 95% CI, 1.6-4.9), maximum soft plaque thickness (prevalence ratio, 1.2 [P<0.001]; 95% CI, 1.1-1.4), and the rim sign (prevalence ratio, 2.0 [P=0.007]; 95% CI, 1.2-3.3). The final discriminatory value (area under the curve=78.3%) was higher than intraluminal thrombus (56.4%, P<0.001), maximum soft plaque thickness (76.4%, P=0.007), or rim sign alone (69.9%, P=0.001). Furthermore, NASCET (North American Symptomatic Carotid Endarterectomy Trial) stenosis categories (cutoffs of 50% and 70%) had lower stroke discrimination (area under the curve=67.4%, P<0.001). Conclusions Optimal discrimination of ipsilateral carotid sources of stroke requires information on intraluminal thrombus, maximum soft plaque thickness, and the rim sign. These results argue against the sole use of carotid stenosis to determine stroke sources on CTA, and instead suggest these alternative markers may better diagnose vulnerable carotid plaque and guide treatment decisions.


Subject(s)
Carotid Stenosis/diagnosis , Computed Tomography Angiography/methods , Ischemic Stroke/diagnosis , Plaque, Atherosclerotic/complications , Carotid Stenosis/complications , Carotid Stenosis/surgery , Cross-Sectional Studies , Endarterectomy, Carotid , Female , Humans , Ischemic Stroke/etiology , Male , Middle Aged , Plaque, Atherosclerotic/diagnosis , Plaque, Atherosclerotic/surgery , ROC Curve , Retrospective Studies
18.
Semin Ultrasound CT MR ; 41(6): 572-583, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33308496

ABSTRACT

Although diagnosing the syndrome of dementia is largely a clinical endeavor, neuroimaging plays an increasingly important role in accurately determining the underlying etiology, which extends beyond its traditional role in excluding other causes of altered cognition. New neuroimaging methods not only facilitate the diagnosis of the most common neurodegenerative conditions (particularly Alzheimer Disease [AD]) after symptom onset, but also show diagnostic promise even in the very early or presymptomatic phases of disease. Positron emission tomography (PET) is increasingly recognized as a key clinical tool for differentiating normal age-related changes in brain metabolism (using 18F-fluorodeoxyglucose [FDG]) from those seen in the earliest stages of specific forms of dementia. However, FDG PET only demonstrates nonspecific changes in altered parenchymal glucose uptake and not the specific etiologic proteinopathy causing the abnormal glucose uptake. A growing class of radiotracers targeting specific protein aggregates for amyloid-ß (Aß) and tau are changing the way AD is diagnosed, as these radiotracers directly label the underlying disease pathology. As these pathology-specific radiotracers are currently making their way to the clinic, it is important for the clinical neuroradiologist to understand the underlying patterns of Aß and tau deposition in the context of AD (across its clinical continuum) and in other causes of dementia, as well as understand the implications of current research.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Positron-Emission Tomography/methods , tau Proteins/metabolism , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/metabolism , Humans
19.
BMJ Case Rep ; 13(9)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32928832

ABSTRACT

PHACE syndrome is a rare disorder with posterior fossa brain malformations, segmental infantile haemangiomas, arterial anomalies, cardiac defects and eye anomalies. Cerebral and cervical arterial abnormalities occur commonly in these patients, predisposing subjects with PHACE syndrome to neurovascular complications including migraine-like headaches, moyamoya vasculopathy, arterial dissection and arterial ischaemia stroke. We leveraged institutional MRI protocols developed for adult neurovascular disease to better elucidate the pathogenesis of the arterial alternations observed in PHACE. Using high-resolution vessel wall and 4D flow MRI, we demonstrated enhancement, focal dissection and altered blood flow in a 7-year-old girl with PHACE syndrome. This is the first-time vessel wall imaging has been used to detail the known arterial changes in PHACE, and these findings may indicate that progressive vascular narrowing and vessel wall changes/inflammation are a factor in chronic headaches and other arterial complications seen in subjects with PHACE syndrome.


Subject(s)
Aortic Coarctation/diagnostic imaging , Eye Abnormalities/diagnostic imaging , Magnetic Resonance Angiography/methods , Neurocutaneous Syndromes/diagnostic imaging , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Aortic Coarctation/drug therapy , Aortic Coarctation/physiopathology , Aspirin/therapeutic use , Child , Eye Abnormalities/drug therapy , Eye Abnormalities/physiopathology , Female , Headache/etiology , Humans , Neurocutaneous Syndromes/drug therapy , Neurocutaneous Syndromes/physiopathology
20.
Semin Ultrasound CT MR ; 40(5): 424-433, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31635769

ABSTRACT

Positron emission tomography has become a standard in the staging of head and neck cancer as well as can be used in locating unknown primary malignancies, monitoring disease response, and identifying disease recurrence. Although 18F-fluoro-2-deoxy-d-glucose is by far the most frequently used radiopharmaceutical in head and neck imaging, glycolysis is not the only metabolic process or biochemical pathway that can be visualized. In addition, 18F-fluoro-2-deoxy-d-glucose positron emission tomography can be limited due to the nonspecific nature of alterations in glucose metabolism. In this review, we will cover multiple of the emerging radiotracers that have been applied clinically or are in development as promising tools to better image certain malignancies and delineate disease from treatment effects. The potential advantages and disadvantages of these radiopharmaceuticals will also be discussed.


Subject(s)
Head and Neck Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals , Head/diagnostic imaging , Humans , Neck/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...