Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(30): 7412-7424, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28737038

ABSTRACT

The evolution of solution aggregates of the anionic form of the native monorhamnolipid (mRL) mixture produced by Pseudomonas aeruginosa ATCC 9027 is explored at pH 8.0 using both experimental and computational approaches. Experiments utilizing surface tension measurements, dynamic light scattering, and both steady-state and time-resolved fluorescence spectroscopy reveal solution aggregation properties. All-atom molecular dynamics simulations on self-assemblies of the most abundant monorhamnolipid molecule, l-rhamnosyl-ß-hydroxydecanoyl-ß-hydroxydecanoate (Rha-C10-C10), in its anionic state explore the formation of aggregates and the role of hydrogen bonding, substantiating the experimental results. At pH 8.0, at concentrations above the critical aggregation concentration of 201 µM but below ∼7.5 mM, small premicelles exist in solution; above ∼7.5 mM, micelles with hydrodynamic radii of ∼2.5 nm dominate, although two discrete populations of larger lamellar aggregates (hydrodynamic radii of ∼10 and 90 nm) are also present in solution in much smaller number densities. The critical aggregation number for the micelles is determined to be ∼26 monomers/micelle using fluorescence quenching measurements, with micelles gradually increasing in size with monorhamnolipid concentration. Molecular dynamics simulations on systems with between 10 and 100 molecules of Rha-C10-C10 indicate the presence of stable premicelles of seven monomers with the most prevalent micelle being ∼25 monomers and relatively spherical. A range of slightly larger micelles of comparable stability can also exist that become increasing elliptical with increasing monomer number. Intermolecular hydrogen bonding is shown to play a significant role in stabilization of these aggregates. In total, the computational results are in excellent agreement with the experimental results.

2.
J Am Chem Soc ; 139(14): 5125-5132, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28301722

ABSTRACT

Rhamnolipids are amphiphilic glycolipids biosynthesized by bacteria that, due to their low toxicity and biodegradability, are potential replacements for synthetic surfactants. The previously limited access to pure materials at the gram scale has hindered extensive characterization of rhamnolipid structure-performance behavior. Here, we present an efficient and versatile synthetic methodology from which four diastereomers of the most common monorhamnolipid, α-rhamnopyranosyl-ß-hydroxydecanoyl-ß-hydroxydecanoate, are prepared and subsequently characterized. Exploration of their behavior at the air-water interface is reported and analyzed in terms of the absolute configuration of the lipid tail carbinols at pH 4.0 and 8.0. All diastereomers exhibit a minimum surface tension of about 28 mN/m without a significant difference between the protonated (nonionic) or deprotonated (anionic) states. At pH 4.0 (nonionic), all diastereomers have a critical micelle concentration (CMC) in the micromolar range. At pH 8.0 (anionic), CMC values for the (R,R), (S,S), and (S,R) diastereomers are approximately an order of magnitude higher than in their nonionic states, whereas the (R,S) diastereomer exhibits a CMC about five times larger.

3.
J Am Soc Mass Spectrom ; 23(1): 12-22, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22002227

ABSTRACT

A mass spectrometric method has been delineated for the identification of the epoxide functionalities in unknown monofunctional analytes. This method utilizes gas-phase ion/molecule reactions of protonated analytes with neutral trimethyl borate (TMB) followed by collision-activated dissociation (CAD) in an ion trapping mass spectrometer (tested for a Fourier-transform ion cyclotron resonance and a linear quadrupole ion trap). The ion/molecule reaction involves proton transfer from the protonated analyte to TMB, followed by addition of the analyte to TMB and elimination of methanol. Based on literature, this reaction allows the general identification of oxygen-containing analytes. Vinyl and phenyl epoxides can be differentiated from other oxygen-containing analytes, including other epoxides, based on the loss of a second methanol molecule upon CAD of the addition/methanol elimination product. The only other analytes found to undergo this elimination are some amides but they also lose O = B-R (R = group bound to carbonyl), which allows their identification. On the other hand, other epoxides can be differentiated from vinyl and phenyl epoxides and from other monofunctional analytes based on the loss of (CH(3)O)(2)BOH or formation of protonated (CH(3)O)(2)BOH upon CAD of the addition/methanol elimination product. For propylene oxide and 2,3-dimethyloxirane, the (CH(3)O)(2)BOH fragment is more basic than the hydrocarbon fragment, and the diagnostic ion (CH(3)O)(2)BOH (2) (+) is formed. These reactions involve opening of the epoxide ring. The only other analytes found to undergo (CH(3)O)(2)BOH elimination are carboxylic acids, but they can be differentiated from the rest based on several published ion/molecule reaction methods. Similar results were obtained in the Fourier-transform ion cyclotron resonance and linear quadrupole ion trap mass spectrometer.


Subject(s)
Epoxy Compounds/chemistry , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods , Borates/chemistry , Ethyl Ethers/chemistry , Fourier Analysis , Ions/chemistry , Methanol/chemistry , Oxygen/chemistry , Protons
4.
J Am Soc Mass Spectrom ; 20(7): 1251-62, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19345113

ABSTRACT

A mass spectrometric method is presented for the identification of analytes with two basic functionalities and PA between 222 and 245 kcal/mol, including diamines. This method utilizes gas-phase ion-molecule reactions of protonated analytes with neutral 1,1-diethoxyethene (DEE) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR). A variety of protonated mono-, bi-, and trifunctional analytes containing different functional groups, namely, amido, amino, N-oxide, hydroxy, carboxylic acid, keto, thio, thioether, alkene, phosphite, and phosphonate, were tested in the FT-ICR. The results demonstrate that basic protonated bifunctional compounds (PA between 222 and 245 kcal/mol) react selectively with DEE by forming a specific addition/elimination product ion (adduct - EtOH) (this product was also observed for lysine with three functionalities). The diagnostic reaction sequence involves proton transfer from the protonated analyte to the basic vinyl group in DEE, followed by addition of one of the functional groups of the analyte to the electrophilic alpha-carbon in protonated DEE. The next step involves proton transfer from this functionality to the other analyte functionality, followed by proton transfer to DEE and elimination of ethanol. Since the mechanism involves proton transfer between two functional groups of the analyte, the reaction does not occur for analytes where the two functionalities cannot be in close proximity (i.e., meta-phenylenediamine), and where no proton is available (i.e., dimethylaminoketone).


Subject(s)
Amino Alcohols/chemistry , Diamines/chemistry , Ethyl Ethers/chemistry , Mass Spectrometry/methods , Spectroscopy, Fourier Transform Infrared/methods , Models, Chemical , Protons , Vinyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...