Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JACC Basic Transl Sci ; 4(1): 72-82, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847421

ABSTRACT

As a consequence of the success of present-day cancer treatment, radiotherapy-induced vascular disease is emerging. This disease is caused by chronic inflammatory activation and is likely orchestrated in part by microRNAs. In irradiated versus nonirradiated conduit arteries from patients receiving microvascular free tissue transfer reconstructions, irradiation resulted in down-regulation of miR-29b and up-regulation of miR-146b. miR-29b affected inflammation and adverse wound healing through its targets pentraxin-3 and dipeptidyl-peptidase 4. In vitro and in vivo, we showed that miR-29b overexpression therapy, through inhibition of pentraxin-3 and dipeptidyl-peptidase 4, could dampen the vascular inflammatory response.

2.
Circulation ; 138(15): 1551-1568, 2018 10 09.
Article in English | MEDLINE | ID: mdl-29669788

ABSTRACT

BACKGROUND: Long noncoding RNAs have emerged as critical molecular regulators in various biological processes and diseases. Here we sought to identify and functionally characterize long noncoding RNAs as potential mediators in abdominal aortic aneurysm development. METHODS: We profiled RNA transcript expression in 2 murine abdominal aortic aneurysm models, Angiotensin II (ANGII) infusion in apolipoprotein E-deficient ( ApoE-/-) mice (n=8) and porcine pancreatic elastase instillation in C57BL/6 wild-type mice (n=12). The long noncoding RNA H19 was identified as 1 of the most highly upregulated transcripts in both mouse aneurysm models compared with sham-operated controls. This was confirmed by quantitative reverse transcription-polymerase chain reaction and in situ hybridization. RESULTS: Experimental knock-down of H19, utilizing site-specific antisense oligonucleotides (LNA-GapmeRs) in vivo, significantly limited aneurysm growth in both models. Upregulated H19 correlated with smooth muscle cell (SMC) content and SMC apoptosis in progressing aneurysms. Importantly, a similar pattern could be observed in human abdominal aortic aneurysm tissue samples, and in a novel preclinical LDLR-/- (low-density lipoprotein receptor) Yucatan mini-pig aneurysm model. In vitro knock-down of H19 markedly decreased apoptotic rates of cultured human aortic SMCs, whereas overexpression of H19 had the opposite effect. Notably, H19-dependent apoptosis mechanisms in SMCs appeared to be independent of miR-675, which is embedded in the first exon of the H19 gene. A customized transcription factor array identified hypoxia-inducible factor 1α as the main downstream effector. Increased SMC apoptosis was associated with cytoplasmic interaction between H19 and hypoxia-inducible factor 1α and sequential p53 stabilization. Additionally, H19 induced transcription of hypoxia-inducible factor 1α via recruiting the transcription factor specificity protein 1 to the promoter region. CONCLUSIONS: The long noncoding RNA H19 is a novel regulator of SMC survival in abdominal aortic aneurysm development and progression. Inhibition of H19 expression might serve as a novel molecular therapeutic target for aortic aneurysm disease.


Subject(s)
Aortic Aneurysm, Abdominal/genetics , Muscle, Smooth, Vascular/metabolism , RNA, Long Noncoding/genetics , Angiotensin II , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Apoptosis , Case-Control Studies , Cells, Cultured , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pancreatic Elastase , RNA, Long Noncoding/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Swine , Swine, Miniature , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation
3.
Mol Ther ; 26(4): 1040-1055, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29503197

ABSTRACT

miRNAs are potential regulators of carotid artery stenosis and concordant vulnerable atherosclerotic plaques. Hence, we analyzed miRNA expression in laser captured micro-dissected fibrous caps of either ruptured or stable plaques (n = 10 each), discovering that miR-21 was significantly downregulated in unstable lesions. To functionally evaluate miR-21 in plaque vulnerability, miR-21 and miR-21/apolipoprotein-E double-deficient mice (Apoe-/-miR-21-/-) were assessed. miR-21-/- mice lacked sufficient smooth muscle cell proliferation in response to carotid ligation injury. When exposing Apoe-/-miR-21-/- mice to an inducible plaque rupture model, they presented with more atherothrombotic events (93%) compared with miR-21+/+Apoe-/- mice (57%). We discovered that smooth muscle cell fate in experimentally induced advanced lesions is steered via a REST-miR-21-REST feedback signaling pathway. Furthermore, Apoe-/-miR-21-/- mice presented with more pronounced atherosclerotic lesions, greater foam cell formation, and substantially higher levels of arterial macrophage infiltration. Local delivery of a miR-21 mimic using ultrasound-targeted microbubbles into carotid plaques rescued the vulnerable plaque rupture phenotype. In the present study, we identify miR-21 as a key modulator of pathologic processes in advanced atherosclerosis. Targeted, lesion site-specific overexpression of miR-21 can stabilize vulnerable plaques.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , MicroRNAs/genetics , Animals , Apoptosis/genetics , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Disease Models, Animal , Fibrosis , Gene Expression Profiling , Gene Transfer Techniques , Genotype , Humans , Immunohistochemistry , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Knockout , MicroRNAs/administration & dosage , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology
5.
Circ Res ; 120(4): 633-644, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-27895035

ABSTRACT

RATIONALE: In the search for markers and modulators of vascular disease, microRNAs (miRNAs) have emerged as potent therapeutic targets. OBJECTIVE: To investigate miRNAs of clinical interest in patients with unstable carotid stenosis at risk of stroke. METHODS AND RESULTS: Using patient material from the BiKE (Biobank of Karolinska Endarterectomies), we profiled miRNA expression in patients with stable versus unstable carotid plaque. A polymerase chain reaction-based miRNA array of plasma, sampled at the carotid lesion site, identified 8 deregulated miRNAs (miR-15b, miR-29c, miR-30c/d, miR-150, miR-191, miR-210, and miR-500). miR-210 was the most significantly downregulated miRNA in local plasma material. Laser capture microdissection and in situ hybridization revealed a distinct localization of miR-210 in fibrous caps. We confirmed that miR-210 directly targets the tumor suppressor gene APC (adenomatous polyposis coli), thereby affecting Wnt (Wingless-related integration site) signaling and regulating smooth muscle cell survival, as well as differentiation in advanced atherosclerotic lesions. Substantial changes in arterial miR-210 were detectable in 2 rodent models of vascular remodeling and plaque rupture. Modulating miR-210 in vitro and in vivo improved fibrous cap stability with implications for vascular disease. CONCLUSIONS: An unstable carotid plaque at risk of stroke is characterized by low expression of miR-210. miR-210 contributes to stabilizing carotid plaques through inhibition of APC, ensuring smooth muscle cell survival. We present local delivery of miR-210 as a therapeutic approach for prevention of atherothrombotic vascular events.


Subject(s)
MicroRNAs/administration & dosage , MicroRNAs/biosynthesis , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/therapy , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/therapy , Carotid Stenosis/metabolism , Carotid Stenosis/pathology , Carotid Stenosis/therapy , Cells, Cultured , Cohort Studies , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Laser Capture Microdissection/methods , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/analysis , Plaque, Atherosclerotic/pathology , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Stroke/pathology , Stroke/prevention & control
6.
Ann Transl Med ; 4(12): 236, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27429962

ABSTRACT

Non-coding RNA (ncRNA) is a class of genetic, epigenetic and translational regulators, containing short and long transcripts with intriguing abilities for use as biomarkers due to their superordinate role in disease development. In the past five years many of these have been investigated in cardiovascular diseases (CVD), mainly myocardial infarction (MI) and heart failure. To extend this view, we summarize the existing data about ncRNA as biomarker in the whole entity of CVDs by literature-based review and comparison of the identified candidates. The myomirs miRNA-1, -133a/b, -208a, -499 with well-defined cellular functions have proven equal to classic protein biomarkers for disease detection in MI. Other microRNAs (miRNAs) were reproducibly found to correlate with disease, disease severity and outcome in heart failure, stroke, coronary artery disease (CAD) and aortic aneurysm. An additional utilization has been discovered for therapeutic monitoring. The function of long non-coding transcripts is only about to be unraveled, yet shows great potential for outcome prediction. ncRNA biomarkers have a distinct role if no alternative test is available or has is performing poorly. With increasing mechanistic understanding, circulating miRNA and long non-coding transcripts will provide useful disease information with high predictive power.

7.
Arterioscler Thromb Vasc Biol ; 35(9): 1945-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26183619

ABSTRACT

OBJECTIVE: Despite advances in stent technology for vascular interventions, in-stent restenosis (ISR) because of myointimal hyperplasia remains a major complication. APPROACH AND RESULTS: We investigated the regulatory role of microRNAs in myointimal hyperplasia/ISR, using a humanized animal model in which balloon-injured human internal mammary arteries with or without stenting were transplanted into Rowett nude rats, followed by microRNA profiling. miR-21 was the only significantly upregulated candidate. In addition, miR-21 expression was increased in human tissue samples from patients with ISR compared with coronary artery disease specimen. We systemically repressed miR-21 via intravenous fluorescein-tagged-locked nucleic acid-anti-miR-21 (anti-21) in our humanized myointimal hyperplasia model. As expected, suppression of vascular miR-21 correlated dose dependently with reduced luminal obliteration. Furthermore, anti-21 did not impede reendothelialization. However, systemic anti-miR-21 had substantial off-target effects, lowering miR-21 expression in liver, heart, lung, and kidney with concomitant increase in serum creatinine levels. We therefore assessed the feasibility of local miR-21 suppression using anti-21-coated stents. Compared with bare-metal stents, anti-21-coated stents effectively reduced ISR, whereas no significant off-target effects could be observed. CONCLUSION: This study demonstrates the efficacy of an anti-miR-coated stent for the reduction of ISR.


Subject(s)
Antibodies, Antinuclear/pharmacology , Coated Materials, Biocompatible , Coronary Restenosis/prevention & control , Gene Expression Regulation , Graft Occlusion, Vascular/prevention & control , MicroRNAs/genetics , Animals , Cell Proliferation/drug effects , Coronary Restenosis/genetics , Coronary Restenosis/metabolism , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Coronary Vessels/ultrastructure , Disease Models, Animal , Drug-Eluting Stents , Female , Graft Occlusion, Vascular/genetics , Graft Occlusion, Vascular/metabolism , Humans , Male , MicroRNAs/biosynthesis , MicroRNAs/immunology , Microscopy, Electron, Scanning , Middle Aged , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/ultrastructure , Neointima/metabolism , Neointima/pathology , Prosthesis Design , Rats , Rats, Nude
9.
Nat Commun ; 5: 5214, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25358394

ABSTRACT

Identification and treatment of abdominal aortic aneurysm (AAA) remain among the most prominent challenges in vascular medicine. MicroRNAs (miRNAs) are crucial regulators of cardiovascular pathology and represent intriguing targets to limit AAA expansion. Here we show, by using two established murine models of AAA disease along with human aortic tissue and plasma analysis, that miR-24 is a key regulator of vascular inflammation and AAA pathology. In vivo and in vitro studies reveal chitinase 3-like 1 (Chi3l1) to be a major target and effector under the control of miR-24, regulating cytokine synthesis in macrophages as well as their survival, promoting aortic smooth muscle cell migration and cytokine production, and stimulating adhesion molecule expression in vascular endothelial cells. We further show that modulation of miR-24 alters AAA progression in animal models, and that miR-24 and CHI3L1 represent novel plasma biomarkers of AAA disease progression in humans.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Endothelial Cells/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , Myocytes, Smooth Muscle/metabolism , Animals , Aorta/metabolism , Aortic Aneurysm, Abdominal/etiology , Biomarkers/blood , Cells, Cultured , Chitinase-3-Like Protein 1 , Disease Models, Animal , Disease Progression , Glycoproteins/metabolism , Humans , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL
10.
J Diabetes Res ; 2013: 834727, 2013.
Article in English | MEDLINE | ID: mdl-24369540

ABSTRACT

The rapid rise of type II diabetes mellitus and its accompanying vascular complications call for novel approaches in unravelling its pathophysiological mechanisms and designing new treatment modalities. Noncoding RNAs represent a class of previously unknown molecular modulators of this disease. The most important features of diabetes-induced vascular disease, which include metabolic deregulation, increased oxidative stress, release of inflammatory mediators like adipokines, and pathologic changes in vascular cells, all are depicted and governed by a certain set of noncoding RNAs. While these mechanisms are being unravelled, new diagnostic and therapeutic opportunities to treat diabetes-induced vascular disease emerge.


Subject(s)
Diabetic Angiopathies/metabolism , Diabetic Angiopathies/therapy , RNA, Antisense/physiology , RNA, Untranslated/physiology , Animals , Diabetic Angiopathies/genetics , Humans , Hyperglycemia/complications , Hyperglycemia/genetics , Hyperglycemia/metabolism , Insulin/metabolism , Microarray Analysis , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...