Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687503

ABSTRACT

This paper presents new photocatalysts obtained by treating carbon spheres (CS) and TiO2 in a microwave reactor at a pressure of 20 atm and a temperature of up to 300 °C for 15 min and then depositing TiO2/CS composites on glass fibre cloths. Such highly CO2-adsorbing photocatalysts showed photoactivity in the simultaneous water-splitting process, generating H2, reducing CO2 to CO and CH4, and reducing N2 to NH3. In addition, calculations of the hydrogen balance involved in all reactions were performed. Adding 1 g of carbon spheres per 1 g of TiO2 maintained the high selectivity of nitrogen fixation at 95.87-99.5%, which was continuously removed from the gas phase into the water as NH4+ ions.

2.
Molecules ; 28(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36838643

ABSTRACT

The presented work shows the antibacterial activity of TiO2 photocatalysts modified by 3-aminopropyltriethoxysilane (APTES). The APTES-functionalized TiO2 samples were obtained by the solvothermal process followed by calcination. The antibacterial activity of APTES/TiO2 samples was evaluated with two species of bacteria, Escherichia coli and Staphylococcus epidermidis, under artificial solar light (ASL) irradiation. The used bacteria are model organisms characterized by negative zeta potential (approx. -44.2 mV for E. coli and -42.3 mV for S. epidermidis). For the first time, the antibacterial properties of APTES-functionalized TiO2 were evaluated against mono- and co-cultured bacteria. The high antibacterial properties characterized the obtained APTES-modified nanomaterials. The best antibacterial properties were presented in the TiO2-4 h-120 °C-300 mM-Ar-300 °C sample (modified with 300 mM of APTES and calcined at 300 °C). The improvement of the antibacterial properties was attributed to a positive value of zeta potential, high surface area, and porous volume.


Subject(s)
Escherichia coli , Staphylococcus epidermidis , Escherichia coli/radiation effects , Coculture Techniques , Catalysis , Titanium/radiation effects , Anti-Bacterial Agents
3.
ChemistryOpen ; 11(4): e202100262, 2022 04.
Article in English | MEDLINE | ID: mdl-35373521

ABSTRACT

A new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7-8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 µmol h-1 during 24 h of radiation.


Subject(s)
Carbon Dioxide , Hydrogen , Bicarbonates , Carbon Dioxide/chemistry , Hydroxyl Radical , Sodium Hydroxide/chemistry
4.
Materials (Basel) ; 15(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35057273

ABSTRACT

The study presents the terrestrial laser scanning (TLS) diagnostic of the clay brick masonry arched staircase in a historic building. Based on the measurements of the existing arched stair flights, 1:1 scale experimental models with and without stair treads were made. Strength tests of the models were carried out for different concentrated force locations in relation to the supporting structure. Force, deflections and reaction in the upper support of the run were measured during the tests. The influence of the masonry steps on the curved vault on the load capacity and stiffness of the run structure was analyzed. The conducted experimental investigations showed that the key element responsible for the actual load-bearing capacity and stiffness of this type of stair flights were the treads above the masonry arch.

5.
Materials (Basel) ; 14(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34771988

ABSTRACT

The study analyzes the anisotropy effect for ceramic masonry based on experimental tests of samples made of 25 × 12 × 6.5 cm3 solid brick elements with compressive strength fb = 44.1 MPa and cement mortar with compressive strength fm = 10.9 MPa. The samples were loaded in a single plane with a joint angle that varied from the horizontal plane. The load was applied in a vertical direction. The samples were loaded at angles of 90°, 67.5°, 45°, 22.5°, and 0° toward the bed joints. The most unfavourable cases were determined. It was observed that the anisotropy of the masonry significantly influences the load-bearing capacity of the walls depending on the angle of the compressive stresses trajectory. Approximation curves and equations for compressive strength, Young's modulus, and Poisson's coefficient were proposed. It was observed that Young's modulus and Poisson's ratio will also change depending on the trajectory of compressive stresses as a function of the joint angle. Experimental tests allowed to determine the failure mechanism in prepared specimens. The study allowed to estimate the masonry strength with the load acting at different angles toward the bed joints.

6.
J Phys Chem A ; 113(17): 4947-53, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19338325

ABSTRACT

The reaction of iron carbide embedded in a carbon matrix with water vapor was studied in the temperature range 300-500 degrees C and the partial pressure of water vapor p(H(2)O) = 0.63-3.26 kPa. At these conditions the superfine magnetite and hematite are the products of this reaction. High oxidation temperature and low partial pressure of water vapor are favorable conditions to obtain only magnetite phase dispersed in a carbon matrix. The oxidation rate of iron and iron carbide is the same for both of them in the initial, kinetic stage of the reaction. It was observed that carbon deposit caused an increase in the reaction rate as a result of spillover effect. The oxidation rate of iron carbide distributed in a carbon matrix increases linearly with the carburization degree of the sample. The reaction rate is also linearly dependent on the partial pressure of water vapor. The apparent activation energy was determined as 110 kJ/mol.


Subject(s)
Carbon/chemistry , Iron Compounds/chemistry , Steam , Ferrosoferric Oxide/chemistry , Kinetics , Oxidation-Reduction , Particle Size , Pressure , Surface Properties , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...