Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biology (Basel) ; 13(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39336082

ABSTRACT

Background: Previous research has shown that the Serum Amyloid A (SAA) protein family is intricately involved in inflammatory signaling and various disease pathologies. We have previously demonstrated that SAA is associated with increased colitis disease severity and the promotion of tumorigenesis. However, the specific role of SAA proteins in breast cancer pathology remains unclear. Therefore, we investigated the role of systemic SAA1 and SAA2 (SAA1/2) in a triple-negative breast cancer mouse model. Methods: Syngeneic breast tumors were established in wild-type mice, and mice lacking the SAA1/2 (SAADKO). Subsequently, tumor volume was monitored, species survival determined, the inflammatory profiles of mice assessed with a multiplex assay, and tumor molecular biology and histology characterized with Western blotting and H&E histological staining. Results: WT tumor-bearing mice had increased levels of plasma SAA compared to wild-type control mice, while SAADKO control and tumor-bearing mice presented with lower levels of SAA in their plasma. SAADKO tumor-bearing mice also displayed significantly lower concentrations of systemic inflammatory markers. Tumors from SAADKO mice overall had lower levels of SAA compared to tumors from wild-type mice, decreased apoptosis and inflammasome signaling, and little to no tumor necrosis. Conclusions: We demonstrated that systemic SAA1/2 stimulates the activation of the NLRP3 inflammasome in breast tumors, leading to the production of pro-inflammatory cytokines. This, in turn, promoted apoptosis and tumor necrosis but did not significantly impact tumor growth or histological grading.

2.
Acta Histochem ; 126(5-7): 152191, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39216306

ABSTRACT

Tumour endothelial cells (TECs) are genetically and phenotypically distinct from their normal, healthy counterparts and provide various pro-tumourigenic effects. This study aimed to investigate the impact of conditioned media (CM) from non-tumourigenic MCF-12A breast epithelial cells as well as from MCF-7 and MDA-MB-231 breast cancer cells on human umbilical vein endothelial cells (HUVECs). Significant increases in cell viability were observed across all breast CM groups compared to controls, with notable differences between the MCF-12A, MCF-7, and MDA-MB-231 groups. Despite increased viability, no significant differences in MCM2 expression, a marker of cell proliferation, were detected. Morphological changes in HUVECs, including elongation, lumen formation, and branching, were more pronounced in breast cancer CM groups, especially in the MDA-MB-231 CM group. qPCR and Western blot analyses showed increased expression of TEC markers such as MDR1, LOX, and TEM8 in HUVECs treated with MCF-12A CM. The MCF-7 CM group significantly enhanced HUVEC migratory activity compared to MCF-12A CM, as evidenced by a scratch assay. These findings underscore distinct angiogenic responses elicited by non-tumourigenic and tumourigenic breast epithelial cells, with tumourigenic cells inducing a hyperactivated angiogenic response. The study highlights the differential effects of breast cancer cell paracrine signalling on endothelial cells and suggests the need for further investigation into TEC markers' role in both physiological and tumour angiogenesis.


Subject(s)
Breast Neoplasms , Human Umbilical Vein Endothelial Cells , Paracrine Communication , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Human Umbilical Vein Endothelial Cells/metabolism , Culture Media, Conditioned/pharmacology , Phenotype , MCF-7 Cells , Cell Proliferation , Cell Line, Tumor , Cell Movement , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Survival
3.
Cancer Control ; 31: 10732748241261539, 2024.
Article in English | MEDLINE | ID: mdl-38881031

ABSTRACT

Cervical cancer is the fourth most common cancer in women. Advanced stage and metastatic disease are often associated with poor clinical outcomes. This substantiates the absolute necessity for high-throughput diagnostic and treatment platforms that are patient and tumour specific. Cervical cancer treatment constitutes multimodal intervention. Systemic treatments such as chemotherapy and/or focal radiotherapy are typically applied as neoadjuvant and/or adjuvant strategies. Cisplatin constitutes an integral part of standard cervical cancer treatment approaches. However, despite initial patient response, de novo or delayed/acquired treatment resistance is often reported, and toxicity is of concern. Chemotherapy resistance is associated with major alterations in genomic, metabolomic, epigenetic and proteomic landscapes. This results in imbalanced homeostasis associated with pro-oncogenic and proliferative survival, anti-apoptotic benefits, and enhanced DNA damage repair processes. Although significant developments in cancer diagnoses and treatment have been made over the last two decades, drug resistance remains a major obstacle to overcome.


Despite advances in treatment, the disease's advanced stages and spread to other parts of the body often lead to poor outcomes. This highlights the urgent need for better diagnostic and treatment methods tailored to each patient and their specific tumour. Treatment for cervical cancer usually involves a combination of therapies. Chemotherapy and focused radiation therapy are commonly used before or after surgery to improve outcomes. However, some patients develop resistance to these treatments, either from the start or after initially responding to therapy. This resistance can make treatment less effective and increase the risk of side effects. Chemotherapy resistance is often linked to changes in the genes and proteins of cancer cells. These changes disrupt the normal balance within the cells, making them more prone to grow and survive, resist cell death, and repair DNA damage caused by treatment. Despite progress in cancer research and treatment, drug resistance remains a significant challenge. This review aims to explore how acquired genetic mutations contribute to drug resistance in cervical cancer. By understanding these mutations better, researchers and clinicians in low- to middle-income countries can develop more effective treatment strategies to improve outcomes for patients.


Subject(s)
Drug Resistance, Neoplasm , Mutation , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Female , Drug Resistance, Neoplasm/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
4.
Immunol Res ; 72(4): 592-604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816670

ABSTRACT

Cervical cancer affects thousands of women globally with recurring high-risk HPV infections being at the centre of cervical pathology. Oncological treatment strategies are continually challenged by both chemoresistance and metastasis within patients. Although both work hand-in-hand, targeting their individual mechanisms could prove highly beneficial for treatment outcomes. Such targets include the metastatic-promoting stem cell marker, CD44, which is abundant in cervical cancer cells and is common to both chemoresistance and metastatic mechanisms. Seeing that many existing advanced-stage cervical cancer treatment regimes, such as platinum-based chemotherapy regimens, remain limited and are rarely curative, alternative treatment options within the field of immunology are being considered. The use of immune checkpoint inhibition therapy, which targets immune checkpoints, CTLA-4 and PD-1/PD-L1, has shown promise as an alternate standard of care for patients suffering from advanced-stage cervical cancer. Therefore, this review aims to assess whether immune checkpoint inhibition can mitigate the pathological effects of CD44-induced EMT, metastasis, and chemoresistance in cervical cancer patients.


Subject(s)
Drug Resistance, Neoplasm , Hyaluronan Receptors , Immune Checkpoint Inhibitors , Immunotherapy , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Hyaluronan Receptors/metabolism , Female , Drug Resistance, Neoplasm/immunology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Neoplasm Metastasis , Disease Progression , Animals , Epithelial-Mesenchymal Transition/immunology
SELECTION OF CITATIONS
SEARCH DETAIL