Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
BBA Adv ; 3: 100089, 2023.
Article in English | MEDLINE | ID: mdl-37101685

ABSTRACT

As a person who has had a long scientific career in Ukraine, both before and after its re-acquisition of independence thirty years ago, I would like to share my observations with the readership of this Special Issue. By no means are these observations meant to provide a systematic presentation, which requires a different format. Rather, they are highly personal notes, providing snippets of the past and present and a discussion of the future of Ukrainian science. They also allow me to acknowledge my wonderful colleagues and bright students. I am delighted to see that many of them have contributed excellent reviews and original manuscripts to this Special Issue. (I am also keenly aware of the fact that because of the brutal invasion and bombardments by our imperial neighbor, many of my colleagues have been unable to share their latest work). It will be up to this next generation of Ukrainian scientists to develop Biological Sciences in Ukraine in the future.

2.
Nucleic Acids Res ; 50(16): 9490-9504, 2022 09 09.
Article in English | MEDLINE | ID: mdl-35971611

ABSTRACT

Protein synthesis in eukaryotic cell is spatially and structurally compartmentalized that ensures high efficiency of this process. One of the distinctive features of higher eukaryotes is the existence of stable multi-protein complexes of aminoacyl-tRNA synthetases and translation elongation factors. Here, we report a quaternary organization of the human guanine-nucleotide exchange factor (GEF) complex, eEF1B, comprising α, ß and γ subunits that specifically associate into a heterotrimeric form eEF1B(αßγ)3. As both the eEF1Bα and eEF1Bß proteins have structurally conserved GEF domains, their total number within the complex is equal to six. Such, so far, unique structural assembly of the guanine-nucleotide exchange factors within a stable complex may be considered as a 'GEF hub' that ensures efficient maintenance of the translationally active GTP-bound conformation of eEF1A in higher eukaryotes.


Subject(s)
Guanine Nucleotide Exchange Factors , Peptide Elongation Factor 1 , Humans , Peptide Elongation Factor 1/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Protein Biosynthesis , Nucleotides/metabolism , Guanine
3.
Int J Biol Macromol ; 126: 899-907, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30590147

ABSTRACT

Translation elongation factor 1Bß (eEF1Bß) is a metazoan-specific protein involved into the macromolecular eEF1B complex, containing also eEF1Bα and eEF1Bγ subunits. Both eEF1Bα and eEF1Bß ensure the guanine nucleotide exchange on eEF1A while eEF1Bγ is thought to have a structural role. The structures of the eEF1Bß catalytic C-terminal domain and neighboring central acidic region are known while the structure of the protein-binding N-terminal domain remains unidentified which prevents clear understanding of architecture of the eEF1B complex. Here we show that the N-terminal domain comprising initial 77 amino acids of eEF1Bß, eEF1Bß(1-77), is a monomer in solution with increased hydrodynamic volume. This domain binds eEF1Bγ in equimolar ratio. The CD spectra reveal that the secondary structure of eEF1Bß(1-77) consists predominantly of α-helices and a portion of disordered region. Very rapid hydrogen/deuterium exchange for all eEF1Bß(1-77) peptides favors a flexible tertiary organization of eEF1Bß(1-77). Computational modeling of eEF1Bß(1-77) suggests several conformation states each composed of three α-helices connected by flexible linkers. Altogether, the data imply that the protein-binding domain of eEF1Bß shows flexible spatial organization which may be needed for interaction with eEF1Bγ or other protein partners.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Peptide Elongation Factor 1/chemistry , Peptide Elongation Factor 1/metabolism , Guanine Nucleotide Exchange Factors/isolation & purification , Humans , Models, Molecular , Peptide Elongation Factor 1/isolation & purification , Peptides/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Recombinant Proteins/isolation & purification , Reproducibility of Results , Structure-Activity Relationship
4.
FEBS J ; 283(3): 484-97, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26587907

ABSTRACT

Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Nucleotides/metabolism , Peptide Elongation Factor 1/chemistry , Peptide Elongation Factor 1/metabolism , Amino Acid Sequence , Biocatalysis , Humans , Molecular Sequence Data , Nucleotides/chemistry , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment
5.
FEBS Lett ; 589(11): 1187-93, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25862498

ABSTRACT

Translation elongation factor eEF1A is a G-protein which has a crucial role in the ribosomal polypeptide elongation and possesses a number of non-translational functions. Here, we show that the A,A(∗),A' helices segment of mammalian eEF1A is dispensable for the eEF1A*eEF1Bα complex formation. The A,A(∗),A' helices region did not interact with actin; however, its removal eliminates the actin bundling activity of eEF1A, probably due to the destruction of a dimeric structure of eEF1A. The translation function of monomers and the actin-bundling function of dimers of mammalian eEF1A is suggested.


Subject(s)
Amino Acid Sequence , Peptide Elongation Factor 1/chemistry , Protein Multimerization , Sequence Deletion , Actins/chemistry , Actins/genetics , Actins/metabolism , Animals , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Protein Structure, Quaternary , Protein Structure, Secondary , Rabbits
6.
Nucleic Acids Res ; 42(20): 12939-48, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25326326

ABSTRACT

Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the 'GTP'- and 'GDP'-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis.


Subject(s)
Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , Peptide Elongation Factor 1/chemistry , Animals , Crystallography, X-Ray , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Magnesium/chemistry , Models, Molecular , Peptide Elongation Factor 1/metabolism , Protein Binding , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Rabbits
7.
Biochemistry ; 52(32): 5345-53, 2013 Aug 13.
Article in English | MEDLINE | ID: mdl-23859436

ABSTRACT

Translation elongation factor 1A (eEF1A) directs aminoacyl-tRNA to the A site of 80S ribosomes. In addition, more than 97% homologous variants of eEF1A, A1 and A2, whose expression in different tissues is mutually exclusive, may fulfill a number of independent moonlighting functions in the cell; for instance, the unusual appearance of A2 in an A1-expressing tissue was recently linked to the induction of carcinogenesis. The structural background explaining the different functional performance of the highly homologous proteins is unclear. Here, the main difference in the structural properties of these proteins was revealed to be the improved ability of A1 to self-associate, as demonstrated by synchrotron small-angle X-ray scattering (SAXS) and analytical ultracentrifugation. Besides, the SAXS measurements at different urea concentrations revealed the low resistance of the A1 protein to urea. Titration of the proteins by hydrophobic dye 8-anilino-1-naphthalenesulfonate showed that the A1 isoform is more hydrophobic than A2. As the different association properties, lipophilicity, and stability of the highly similar eEF1A variants did not influence considerably their translation functions, at least in vitro, we suggest this difference may indicate a structural background for isoform-specific moonlighting roles.


Subject(s)
Peptide Elongation Factor 1/chemistry , Amino Acid Sequence , Anilino Naphthalenesulfonates/chemistry , Anilino Naphthalenesulfonates/metabolism , Animals , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Peptide Elongation Factor 1/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Stability , Protein Structure, Tertiary , RNA, Transfer, Amino Acyl/metabolism , Rabbits , Ribosomes/metabolism , Scattering, Small Angle , Surface Properties
8.
Nucleic Acids Res ; 36(14): 4736-44, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18632761

ABSTRACT

It is generally believed that basic features of ribosomal functions are universally valid, but a systematic test still stands out for higher eukaryotic 80S ribosomes. Here we report: (i) differences in tRNA and mRNA binding capabilities of eukaryotic and bacterial ribosomes and their subunits. Eukaryotic 40S subunits bind mRNA exclusively in the presence of cognate tRNA, whereas bacterial 30S do bind mRNA already in the absence of tRNA. 80S ribosomes bind mRNA efficiently in the absence of tRNA. In contrast, bacterial 70S interact with mRNA more productively in the presence rather than in the absence of tRNA. (ii) States of initiation (P(i)), pre-translocation (PRE) and post-translocation (POST) of the ribosome were checked and no significant functional differences to the prokaryotic counterpart were observed including the reciprocal linkage between A and E sites. (iii) Eukaryotic ribosomes bind tetracycline with an affinity 15 times lower than that of bacterial ribosomes (K(d) 30 microM and 1-2 microM, respectively). The drug does not effect enzymatic A-site occupation of 80S ribosomes in contrast to non-enzymatic tRNA binding to the A-site. Both observations explain the relative resistance of eukaryotic ribosomes to this antibiotic.


Subject(s)
Protein Biosynthesis , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosomes/metabolism , Allosteric Regulation , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Peptide Chain Initiation, Translational , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Rabbits , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Small, Bacterial/metabolism , Ribosomes/chemistry , Ribosomes/drug effects , Tetracycline/pharmacology
9.
BMC Struct Biol ; 8: 4, 2008 Jan 25.
Article in English | MEDLINE | ID: mdl-18221514

ABSTRACT

BACKGROUND: Eukaryotic translation elongation factor eEF1A directs the correct aminoacyl-tRNA to ribosomal A-site. In addition, eEF1A is involved in carcinogenesis and apoptosis and can interact with large number of non-translational ligands. There are two isoforms of eEF1A, which are 98% similar. Despite the strong similarity, the isoforms differ in some properties. Importantly, the appearance of eEF1A2 in tissues in which the variant is not normally expressed can be coupled to cancer development.We reasoned that the background for the functional difference of eEF1A1 and eEF1A2 might lie in changes of dynamics of the isoforms. RESULTS: It has been determined by multiple MD simulation that eEF1A1 shows increased reciprocal flexibility of structural domains I and II and less average distance between the domains, while increased non-correlated diffusive atom motions within protein domains characterize eEF1A2. The divergence in the dynamic properties of eEF1A1 and eEF1A2 is caused by interactions of amino acid residues that differ between the two variants with neighboring residues and water environment. The main correlated motion of both protein isoforms is the change in proximity of domains I and II which can lead to disappearance of the gap between the domains and transition of the protein into a "closed" conformation. Such a transition is reversible and the protein can adopt an "open" conformation again. This finding is in line with our earlier experimental observation that the transition between "open" and "closed" conformations of eEF1A could be essential for binding of tRNA and/or other biological ligands. The putative calmodulin-binding region Asn311-Gly327 is less flexible in eEF1A1 implying its increased affinity for calmodulin. The ability of eEF1A1 rather than eEF1A2 to interact with Ca2+/calmodulin is shown experimentally in an ELISA-based test. CONCLUSION: We have found that reversible transitions between "open" and "close" conformations of eEF1A provide a molecular background for the earlier observation that the eEF1A molecule is able to change the shape upon interaction with tRNA. The ability of eEF1A1 rather than eEF1A2 to interact with calmodulin is predicted by MD analysis and showed experimentally. The differential ability of the eEF1A isoforms to interact with signaling molecules discovered in this study could be associated with cancer-related properties of eEF1A2.


Subject(s)
Calmodulin/metabolism , Peptide Elongation Factor 1/chemistry , Amino Acid Sequence , Binding Sites , Calcium/chemistry , Calmodulin/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Peptide Elongation Factor 1/metabolism , Protein Conformation , Protein Isoforms/chemistry , Protein Structure, Tertiary , Sequence Alignment
10.
Int J Biochem Cell Biol ; 40(1): 63-71, 2008.
Article in English | MEDLINE | ID: mdl-17936057

ABSTRACT

The eEF1A1 and eEF1A2 isoforms of translation elongation factor 1A have 98% similarity and perform the same protein synthesis function catalyzing codon-dependent binding of aminoacyl-tRNA to 80S ribosome. However, the isoforms apparently play different non-canonical roles in apoptosis and cancer development which are awaiting further investigations. We hypothesize that the difference in non-translational functions could be caused, in particular, by differential ability of the isoforms to be involved in phosphotyrosine-mediated signalling. The ability of eEF1A1 and eEF1A2 to interact with SH2 and SH3 domains of different signalling molecules in vitro was compared. Indeed, contrary to eEF1A1, eEF1A2 was able to interact with SH2 domains of Grb2, RasGAP, Shc and C-terminal part of Shp2 as well as with SH3 domains of Crk, Fgr, Fyn and phospholipase C-gamma1. Interestingly, the interaction of both isoforms with Shp2 in vivo was found using stable cell lines expressing eEF1A1-His or eEF1A2-His. The formation of a complex between endogenous eEF1A and Shp2 was also shown. Importantly, a higher level of tyrosine phosphorylation of eEF1A2 as compared to eEF1A1 was demonstrated in several independent experiments and its importance for interaction of eEF1A2 with Shp2 in vitro was revealed. Thus, despite the fact that both isoforms of eEF1A could be involved in the phosphotyrosine-mediated processes, eEF1A2 apparently has greater potential to participate in such signalling pathways. Since tyrosine kinases/phosphatases play a prominent role in human cancerogenesis, our observations may gave a basis for recently found oncogenicity of the eEF1A2 isoform.


Subject(s)
Peptide Elongation Factor 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Animals , Cattle , Cell Line , Cell Transformation, Neoplastic , Humans , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Phosphorylation , Protein Biosynthesis , Protein Interaction Domains and Motifs/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Rabbits , Transfection , src Homology Domains/genetics
11.
Anal Chim Acta ; 568(1-2): 248-58, 2006 May 24.
Article in English | MEDLINE | ID: mdl-17761266

ABSTRACT

The key theoretical principles of the work on ion-selective field-effect transistor connected with their application in bioanalytical practice, some specifics of modern microtechnologies for their creation, and measurement schemes with set-ups are discussed. The achievements in the creation of enzyme biosensors based on ion-selective field-effect transistors and prospects for their application are described in detail.

12.
Talanta ; 66(1): 28-33, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-18969957

ABSTRACT

The applicability of an enzyme biosensor based on pH-ISFETs for direct determination of total glycoalkaloids content in real potato samples, without any pre-treatment, is shown. The results of determination of the total glycoalkaloids concentrations in potato samples from different experimental varieties obtained by the biosensor are well correlated with the analogous data obtained by the HPLC method with standard complex sample pre-treatment procedure. The detection of total glycoalkaloids content by biosensors is reproducible, the relative standard deviation was around 3%. The dependence of total glycoalkaloids content on various parts of the potato tuber and their size, different growing area has been shown using the biosensor developed. The method based on biosensors is cheap, easy to operate and requires a shorter analysis time than the one needed using traditional methods for glycoalkaloids determination. The biosensor can operate directly on potato juice, or even directly on a suspension of potato or plant material. It can provide a way to save time and costs, with a possibility of taking rapid assessment of total glycoalkaloids content in a wide variety of potato cultivars. Furthermore the operational and storage stability of this biosensor are quite good with a drift lower than 1% per day and response being stable for more than 3 months.

13.
Trends Biotechnol ; 22(3): 147-51, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15036866

ABSTRACT

As one of the major agricultural crops, the cultivated potato is consumed each day by millions of people from diverse cultural backgrounds. A product of global importance, the potato tuber contains toxic glycoalkaloids (GAs) that cause sporadic outbreaks of poisoning in humans, as well as many livestock deaths. This article will discuss some aspects of the potato GAs, including their toxic effects and risk factors, methods of detection of GAs and biotechnological aspects of potato breeding. An attempt has been made to answer a question of vital importance - are potato GAs dangerous to humans and animals and, if so, to what extent?


Subject(s)
Solanaceous Alkaloids/pharmacology , Solanine/analogs & derivatives , Solanum tuberosum/chemistry , Abnormalities, Drug-Induced/etiology , Animals , Cell Division/drug effects , Cell Line, Tumor , Cell Physiological Phenomena/drug effects , DNA Damage , Humans , Plant Poisoning/etiology , Solanine/pharmacology , Viruses/drug effects
14.
Anal Bioanal Chem ; 377(3): 496-506, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12904953

ABSTRACT

This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry. The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges. Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described. We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.


Subject(s)
Biosensing Techniques , Enzyme Inhibitors/analysis , Transistors, Electronic , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Enzyme Stability , Enzymes, Immobilized/chemistry , Substrate Specificity , Urea/analysis , Urease/chemistry
15.
Biosens Bioelectron ; 18(8): 1047-53, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12782468

ABSTRACT

Highly sensitive biosensors based on pH-sensitive field effect transistors and cholinesterases for detection of solanaceous glycoalkaloids have been developed, characterised and optimised. The main analytical characteristics of the biosensors developed have been studied under different conditions and an optimal experimental protocol for glycoalkaloids determination in model solution has been proposed. Using such a biosensor and an enzyme reversible inhibition effect, the total potato glycoalkaloids content can be determined within the range of 0.2-100 microM depending on the type of alkaloid, with lowest detection limits of 0.2 microM for alpha-chaconine, 0.5 microM for alpha-solanine and 1 microM for solanidine. The dynamic ranges for the compounds examined show that such biosensors are suitable for a quantitative detection of glycoalkaloids in real potato samples. High reproducibility, operational and storage stability of the biosensor developed have been shown.


Subject(s)
Biosensing Techniques/methods , Cholinesterases/chemistry , Electrochemistry/methods , Solanaceous Alkaloids/analysis , Solanaceous Alkaloids/chemistry , Solanum tuberosum/chemistry , Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Equipment Design , Equipment Failure Analysis , Food Analysis/instrumentation , Food Analysis/methods , Hydrogen-Ion Concentration , Quality Control , Reproducibility of Results , Sensitivity and Specificity , Transistors, Electronic
16.
Eur J Biochem ; 269(19): 4811-8, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12354112

ABSTRACT

Multimolecular complexes involving the eukaryotic elongation factor 1A (eEF1A) have been suggested to play an important role in the channeling (vectorial transfer) of tRNA during protein synthesis [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. Mol. Biol. 60, 47-78]. Recently we have demonstrated that besides performing its canonical function of forming a ternary complex with GTP and aminoacyl-tRNA, the mammalian eEF1A can produce a noncanonical ternary complex with GDP and uncharged tRNA [Petrushenko, Z.M., Negrutskii, B.S., Ladokhin, A.S., Budkevich, T.V., Shalak, V.F. & El'skaya, A.V. (1997) FEBS Lett. 407, 13-17]. The [eEF1A.GDP.tRNA] complex has been hypothesized to interact with aminoacyl-tRNA synthetase (ARS) resulting in a quaternary complex where uncharged tRNA is transferred to the enzyme for aminoacylation. Here we present the data on association of the [eEF1A.GDP.tRNA] complex with phenylalanyl-tRNA synthetase (PheRS), e.g. the formation of the above quaternary complex detected by the gel-retardation and surface plasmon resonance techniques. To estimate the stability of the novel ternary and quaternary complexes of eEF1A the fluorescence method and BIAcore analysis were used. The dissociation constants for the [eEF1A.GDP.tRNA] and [eEF1A.GDP.tRNAPhe.PheRS] complexes were found to be 20 nm and 9 nm, respectively. We also revealed a direct interaction of PheRS with eEF1A in the absence of tRNAPhe (Kd = 21 nm). However, the addition of tRNAPhe accelerated eEF1A.GDP binding to the enzyme. A possible role of these stable novel ternary and quaternary complexes of eEF1A.GDP with tRNA and ARS in the channeled elongation cycle is discussed.


Subject(s)
Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Guanosine Diphosphate/chemistry , Guanosine Diphosphate/metabolism , Peptide Elongation Factor 1/chemistry , Peptide Elongation Factor 1/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Animals , Drug Stability , In Vitro Techniques , Kinetics , Macromolecular Substances , Models, Biological , Peptide Chain Elongation, Translational , Phenylalanine-tRNA Ligase/chemistry , Phenylalanine-tRNA Ligase/metabolism , RNA, Transfer, Phe/chemistry , RNA, Transfer, Phe/metabolism , Rabbits , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL