Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Oral Dis ; 29(8): 3243-3258, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35877467

ABSTRACT

OBJECTIVES: Zinc sulfide nanoparticles (ZnS NPs), as one of the quantum dots less than 10 nm, possess unique size-dependent autofluorescence. Excitation of their valence electrons by energy higher than the bandgap reveals the ZnS NPs' inherited photocatalysis with additive cytotoxic consequences of reactive oxygen species (ROS) release. Coupling the cytotoxicity of photoactivated ZnS NPs with their autofluorescence would be a novel theranostic modality, combating superficially accessible carcinoma. MATERIAL AND METHODS: After synthesizing and characterization of ZnS NPs, we verified their photocatalysis and electron donation upon UV excitation in degrading organic dye and DNA cleavage, respectively. We then tested the efficacy of UV-activated ZnS NPs to induce ROS-dependent apoptosis in squamous cell carcinoma and breast cancer cell lines. RESULTS: The energetic electron-hole pairs generated upon UV excitation of ZnS NPs with the consequent cascade of ROS release revealed potent apoptotic cancer cell deaths, compared with single treatment modalities of nonexcited nanoparticles and UV. Moreover, the inherited luminescence of ZnS NPs enabled visualization of their predominant intracytoplasmic uptake with tracking of their cellular response. CONCLUSION: The intensified luminescence and the fortified cytotoxicity of photoactivated ZnS NPs enhance their theranostic qualifications, boosting their antitumorigenic use.


Subject(s)
Nanoparticles , Neoplasms , Humans , Reactive Oxygen Species/metabolism , Precision Medicine , Zinc Compounds/pharmacology , Sulfides/pharmacology
2.
Trials ; 23(1): 558, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804457

ABSTRACT

BACKGROUND: Minimally invasive dentistry is a highly convenient and efficient method of managing caries in pediatric patients. Silver diamine fluoride (SDF) is commonly used to arrest active caries lesions. However, the associated black stain, possibility of soft tissue injury, and unpleasant taste often limit its use. Recently, nanosilver fluoride (NSF) emerged as a promising topical fluoride agent with potent cariostatic and antibacterial potentials. This novel anticaries agent has gained attention as an alternative to overcome the drawbacks of SDF in caries arrest. OBJECTIVES: To assess the antibacterial effect of NSF in relation to caries activity in dentin caries lesions, as well as to investigate the change in saliva bacterial levels in primary teeth in comparison to SDF after 1 and 3 months. MATERIALS AND METHODS: Fifty children aged 4 to 6 years old with active dentin caries lesions (score 5 according to International Detection and Assessment System (ICDAS II) criteria) will be enrolled in the study. They will be equally and randomly allocated into 2 groups: a group receiving NSF and a control group receiving SDF treatment. Microbiological samples will be collected from the carious lesions and from unstimulated saliva at the baseline and at the 1 and 3 months' follow-up appointments. Bacterial counts will be assessed using Mitis Salivarius agar (selective culture media for S. mutans) and Rogosa agar (selective culture media for lactobacilli), and the results will be expressed in colony-forming units. Data regarding the children's oral health will be collected and their dmf index will be scored. The arrest of active carious lesions will be measured at the follow-up appointments according to ICDAS II criteria. RESULTS: The relation between bacterial colony counts and lesion activity for both groups will be assessed, as well as the change in salivary bacterial counts. The collected data will be statistically evaluated and tabulated. This clinical trial has been registered on ClinicalTrials.gov in January 2022 (original version) with ID: NCT05221749.


Subject(s)
Dental Caries , Fluorides, Topical , Quaternary Ammonium Compounds , Agar/pharmacology , Anti-Bacterial Agents/therapeutic use , Child , Child, Preschool , Culture Media/pharmacology , Dental Caries/drug therapy , Fluorides, Topical/therapeutic use , Humans , Quaternary Ammonium Compounds/therapeutic use , Randomized Controlled Trials as Topic , Tooth, Deciduous
3.
Acta Trop ; 226: 106231, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34785184

ABSTRACT

Constituting the host-parasite interface and playing a censorious role in host immune response modulation and parasite survival, tegument represents a crucial target for many antischistosomal drugs. Sphingomyelin forms a stable outer leaflet of tegumental membrane-lipid bilayer. Neutral magnesium -dependent sphingomyelinase (Mg2+-nSMase) is a key enzyme in sphingomyelin breakdown was identified in schistosomes. We investigated the in vivo efficacy of ubiquinol, a natural inhibitor of Mg2+-nSMase, in free and niosomes-encapsulated forms, through five-day and 15-day regimens on the early and late Schistosoma mansoni parasitic stages, respectively, compared to PZQ. Oral administration of 300 mg/kg/day ubiquinol-encapsulated niosomes (U-N) showed significant deterioration of the parasitic growth and development in the term of reduction of lung schistosomula burden (39.12%), adult worm burden (50.81%), hepatic and intestinal tissue-egg counts (80.89% and 75.54%, respectively). PZQ and free ubiquinol regimens reported reductions in lung schistosomula counts (45.36% and 22.90%, respectively) and total worm burdens of 86.28% and 24.58%, respectively. U-N therapy revealed worms de-pairing and remarkable diminution in female worms' perimeters and fecundity. Scanning electron microscope revealed disruption of tegumental ridges with excessive longitudinal corrugation. Transmission electron microscope showed testicular and ovarian parenchymal degeneration, signs of immaturity and cell apoptosis. Indirect immunofluorescence assay approved parasite's tegumental changes. Remarkable reduction of granulomas size with amelioration of hepatic pathology and fibrosis were assumed to be attributed to the anti-inflammatory and anti-oxidant properties of ubiquinol. These findings with the drug safety profile suggest that U-N could be a promising candidate for a new antischistosomal drug development.


Subject(s)
Pharmaceutical Preparations , Schistosomiasis mansoni , Animals , Disease Models, Animal , Female , Magnesium , Mice , Praziquantel , Schistosoma mansoni , Schistosomiasis mansoni/drug therapy , Sphingomyelin Phosphodiesterase , Ubiquinone/analogs & derivatives
4.
Int J Pharm ; 601: 120564, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33812970

ABSTRACT

Genistein (Gen) is one of the most potent soy isoflavones used for hepatocellular carcinoma (HCC) treatment. Low aqueous solubility and first-pass metabolism are the main obstacles resulting in low Gen oral bioavailability. The current study aims to introduce phytosomes as an approach to improve Gen solubility, protect it from metabolism by complexation with phospholipids (PL), and get used to PL in Gen lymphatic delivery. Different forms of PL namely: Lipiod® S100, Phosal® 53 MCT, and Phosal®75 SA were used in phytosomes preparation GP, GPM, and GPL respectively. The effect of formulation components on Gen absorption, metabolism, and liver accumulation was evaluated following oral administration to rats. Cytotoxicity and cellular uptake studies were applied on HepG2 cells and in-vivo anti-tumor studies were applied to the DEN-mice model. Results revealed that GP and GPL remarkably accumulated Gen aglycone in hepatic cells and minimized the metabolic effect on Gen. They significantly increased the intracellular accumulation of Gen in its complex form in HepG2 cells. Their cytotoxicity is time-dependent according to the complex stability. The enhanced in-vivo anti-tumor effect was observed for GP and GPL compared to Gen suspension on DEN-induced HCC in mice. In conclusion, Gen-phytosomes can represent a promising approach for liver cancer treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Genistein , Liver Neoplasms/drug therapy , Mice , Rats , Solubility
5.
Drug Dev Ind Pharm ; 44(6): 1023-1033, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29484904

ABSTRACT

Ciprofloxacin biodegradable implantable matrices (CPX-IMs) of tailored porous surfaces were fabricated by hot melt injection molding of poly-l-lactic acid (PLLA) followed by coating with PLLA/sodium chloride. CPX-IDs were designed to have a non-porous coat (NPC) or a porous coat of small pore size (SPC; 150-250 µm) or a large pore size (LPC; 250-350 µm). CPX-IMs surface pore size was confirmed by scanning electron microscope. The hardness of NPC, LPC, and SPC CPX-IMs were 58 ± 2.8, 53 ± 1.9, and 50 ± 2.1 N, respectively. The measured porosity values were 41.2 ± 1.53, 65.2 ± 1.1, and 60.7 ± 1.2%, respectively. Differential scanning calorimetry was employed to study the compatibility of ingredients, the effect of injection molding on polymer properties, and implants degradation. Coating of CPX-IMs prolonged drug release to reach a value of 90% release in 40 days. Antibacterial activity tests showed sufficiency of CPX to inhibit pathogens known to cause osteomyelitis. The in vivo study showed tissue compatibilities of the inserted matrices in tested rats with no sign of infection throughout the experiment period. SPC and LPC CPX-IMs demonstrated a better osteointegration, cell adhesion, and infiltration of different types of bone cells within implants structure compared to the non-porous matrix. Furthermore, LPC CPX-IMs showed a superior bone cell attachment and osteointegration relative to SPC CPX-IMs. Findings of this study confirmed the impact of porosity and pore sizes on cell proliferation and fracture healing concurrently with the sustained local antibiotic therapy for treatment or prevention of osteomyelitis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Ciprofloxacin/administration & dosage , Delayed-Action Preparations/therapeutic use , Polyesters/chemistry , Polymers/chemistry , Animals , Anti-Bacterial Agents/chemistry , Calorimetry, Differential Scanning , Ciprofloxacin/chemistry , Drug Liberation , Osteomyelitis , Porosity , Rats
6.
Eur J Pharm Sci ; 93: 233-43, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27503459

ABSTRACT

Direct delivery of sustained therapeutic levels of mesalamine (MS) via rectal systems to manage distal forms of ulcerative colitis was studied. The High molecular weight hydroxypropyl methylcellulose (HPMC K4M) polymer was combined with hydrophilic surfactants to control polymer hydration process allowing optimization of the mucoadhesive and controlled drug release properties for the rectal systems. Physical mixtures and granules of MS and HPMC K4M were prepared and in vitro characterized using scanning electron microscope, differential scanning calorimetry and X-ray diffraction techniques. Rectal formulations were prepared utilizing MS-HPMC K4M mixtures in different polyethylene glycol (PEG) combination bases. The developed rectal formulations were investigated for physical, mucoadhesion, in-vitro drug release and swelling characteristics. Results revealed acceptable physical characteristics of the prepared formulations with good content uniformity and minimum weight variation. Sustained release patterns of MS form HPMC K4M based formulations were observed. Formulations prepared using high proportions of the polymer or PEG 400 showed higher extent of mucoadhesion, swelling and greatly extended drug release time. Efficacy of an optimized formulation was assessed using the acetic acid induced colitis model in rats and compared to a reference polymer-free formulation of the drug. Clinical evaluation included bleeding from rectum, consistency of animal stool and colon/body weight ratio. Furthermore, histopathological analysis was carried out to evaluate the degree of inflammation and mucosal damage. Overall results showed a significant enhancement in the clinical pictures and colon histopathology of animals treated by the sustained release mucoadhesive formulation compared to the reference polymer free formulation and the non-treated colitis group.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Colitis, Ulcerative/drug therapy , Mesalamine/administration & dosage , Adhesiveness , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Colitis, Ulcerative/pathology , Colon/drug effects , Colon/pathology , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/therapeutic use , Drug Compounding , Drug Liberation , Hypromellose Derivatives/chemistry , Male , Mesalamine/chemistry , Mesalamine/therapeutic use , Rats, Sprague-Dawley , Suppositories , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...