Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-19, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656159

ABSTRACT

Acute myeloid leukemia, a serious condition affecting stem cells, drives uncontrollable myeloblast proliferation, leading to accumulation. Extensive research seeks rapid, effective chemotherapeutics. A potential option is a BRD4 inhibitor, known for suppressing cell proliferation. Sulfonamide derivatives probed essential structural elements for potent BRD4 inhibitors. To achieve this goal, we employed 3D-QSAR molecular modeling techniques, including CoMFA, CoMSIA, and HQSAR models, along with molecular docking and molecular dynamics simulations. The validation of the 2D/3D QSAR models, both internally and externally, underscores their robustness and reliability. The contour plots derived from CoMFA, CoMSIA, and HQSAR analyses played a pivotal role in shaping the design of effective BRD4 inhibitors. Importantly, our findings highlight the advantageous impact of incorporating bulkier substituents on the pyridinone ring and hydrophobic/electrostatic substituents on the methoxy-substituted phenyl ring, enhancing interactions with the BRD4 target. The interaction mode of the new compounds with the BRD4 receptor (PDB ID: 4BJX) was investigated using molecular docking simulations, revealing favorable binding energies, supported by the formation of hydrogen and hydrophobic bonds with key protein residues. Moreover, these novel inhibitors exhibited good oral bioavailability and demonstrated non-toxic properties based on ADMET analysis. Furthermore, the newly designed compounds along with the most active one from series 58, underwent a molecular dynamics simulation to analyze their behavior. The simulation provided additional evidence to support the molecular docking results, confirming the sustained stability of the analyzed molecules over the trajectory. This outcome could serve as a valuable reference for designing and developing novel and effective BRD4 inhibitors.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-20, 2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37424193

ABSTRACT

BRAF inhibitors are known to be an effective therapeutic target for treating melanoma and other types of cancer. Using 3D-QSAR, molecular docking, and MD simulations, this study evaluated various imidazo[2,1-b]oxazole derivatives that function as mutant BRAF kinase inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were used to create the 3D-QSAR models. CoMSIA/SEHA model has solid predictive power across several models (Q2 = 0.578; R2 = 0.828; R2pred = 0.74) and is the best model according to the numerous field models generated. The created model's predictive power was evaluated through external validation using a test set. CoMSIA/SEHA contour maps collect information that can be used to identify critical regions with solid anticancer activity. We developed four inhibitors with high predicted activity due to these observations. ADMET prediction was used to assess the toxicity of the proposed imidazo[2,1-b]oxazole compounds. The predictive molecules (T1-T4) demonstrated good ADMET properties, excluding the toxic active compounds 11r from the database. Molecular docking was also used to determine the patterns and modes of interactions between imidazo[2,1-b]oxazole ligands and receptors, which revealed that the proposed imidazo[2,1-b]oxazole scaffold was stable in the receptor's active site (PDB code: 4G9C). The suggested compounds (T1-T4) were subjected to molecular dynamics simulations lasting 100 ns to determine their binding free energies. The results showed that T2 had a more favorable binding free energy (-149.552 kJ/mol) than T1 (-112.556 kJ/mol), T3 (-115.503 kJ/mol), and T4 (-102.553 kJ/mol). The results suggest that the imidazo[2,1-b]oxazole compounds investigated in this study have potential as inhibitors of BRAF kinase and could be further developed as anticancer drugs. Highlights22 imidazo[2,1-b]oxazole compounds were subjected to research on three-dimensional quantitative conformational relationships.Using contour maps from 3D-QSAR models as a guide was used to figure out the areas and strategies for structural optimization.Combined molecular docking, molecular dynamics simulations, and binding free energy calculations to verify the inhibitor activity of the proposed 22 imidazo[2,1-b]oxazole compounds.Four potential B-RAF Kinase inhibitors were discovered, providing theoretical clues for developing a highly anticancer agent.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...